首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
We show that strong constraints on supramolecular structure in amyloid fibrils can be obtained from solid-state nuclear magnetic resonance measurements on samples with uniformly 13C-labeled segments. The measurements exploit two-dimensional (2D) 13C-13C exchange spectroscopy in conjunction with high-speed magic angle spinning, with proton-mediated exchange of 13C nuclear spin magnetization as recently demonstrated by Baldus and co-workers (J. Am. Chem. Soc. 2002, 124, 9704-9705). Proton-mediated 2D exchange spectra of fibrils formed by residues 16-22 of the 40-residue Alzheimer's beta-amyloid peptide show strong nonsequential, intermolecular cross-peaks between alpha-carbons that dictate an antiparallel beta-sheet structure in which residue 16+k aligns with residue 22-k. The strong alpha/alpha cross-peaks are absent from conventional, direct 2D exchange spectra. Proton-mediated 2D exchange spectra of fibrils formed by residues 11-25 indicate an antiparallel beta-sheet structure with a pH-dependent intermolecular alignment. In contrast, proton-mediated 2D exchange spectra of fibrils formed by the full-length beta-amyloid peptide are consistent with a parallel beta-sheet structure. These data show that the supramolecular structure of amyloid fibrils is not determined by the amino acid sequence at the level of 7-residue or 15-residue segments. The proton-mediated 2D exchange spectra additionally demonstrate that the intermolecular alignment in the beta-sheets of these amyloid fibrils is highly ordered, with no detectable evidence for "misalignment" defects.  相似文献   

2.
Recent studies suggest the dominant role of main-chain H-bond formation in specifying beta-sheet topology. Its essentially sequence-independent nature implies a large degree of freedom in designing beta-sheet-based nanomaterials. Here we show rational design of beta-sheet face inversions by incremental deletions of beta-strands from the single-layer beta-sheet of Borrelia outer surface protein A. We show that a beta-sheet structure can be maintained when a large number of native contacts are removed and that one can design large-scale conformational transitions of a beta-sheet such as face inversion by exploiting the promiscuity of strand-strand interactions. High-resolution X-ray crystal structures confirmed the success of the design and supported the importance of main-chain H-bonds in determining beta-sheet topology. This work suggests a simple but effective strategy for designing and controlling nanomaterials based on beta-rich peptide self-assemblies.  相似文献   

3.
Two cyclic disulfide-bridged tetrapeptides [cyclo(Boc-Cys-Pro-Aib-Cys-OMe) (1) and cyclo(Boc-Cys-Pro-Phe-Cys-OMe) (2)] have been monitored by time-resolved mid-IR spectroscopy in the C=O vibrational range. A conformational change is induced by cleavage of the intramolecular disulfide bridge upon UV excitation (lambda(exc) = 260 nm), giving rise to a pair of cysteinyl radicals (thiyl radicals), which diffuse apart allowing the peptide to change conformation before they undergo quenching. The amide I band reports on the dynamics of the peptide backbone, which evolves on a 100 ps time scale and then stays constant up to 10 micros at low enough concentrations ( approximately 100 mM). To probe specifically the lifetime of the free cysteinyl radicals, time-resolved UV laser flash photolysis has been applied. The concentration of the cysteinyl radical decays nonexponentially, but about 50% are still present after 1 ms. The photocleavable disulfide bridge hence may serve as an intrinsic, naturally occurring phototrigger to study peptide dynamics that opens a wide time-window from a few picoseconds to many hundreds of microseconds.  相似文献   

4.
A 28-residue beta-hairpin dimer (WKWK)2 with two Trp and two Lys residues on one face of each beta-sheet was shown to form a complex with single-stranded oligonucleotides at low micromolar concentrations. Each beta-hairpin of the dimer contains a cross-strand Trp-Trp pair in a diagonal orientation which has previously been shown to create a cleft for the intercalation of aromatic guests such as adenine (J. Am. Chem. Soc. 2003, 125, 9580). The beta-hairpin dimer binds 5-residue ssDNA sequences 5'-AAAAA-3', 5'-TTTTT-3', and 5'-CCCCC-3' in water with dissociation constants in the range of 12-30 muM. A weak energetic preference for binding to sequence 5'-AAAAA-3' was observed, which is believed to result from stronger stacking interactions between Trp and the adenine base. The interaction of 5'-AAAAA-3' with the Lys and Trp residues of the peptide was evident by NMR, and a 1:1 association was demonstrated. The recognition of an 11-residue ssDNA sequence occurred with a dissociation constant of 3 muM under near-physiological ionic strength and pH, demonstrating that the beta-hairpin dimer binds ssDNA as strongly as many naturally occurring proteins. The salt dependence of the interaction of the 11-residue oligonucleotide with the peptide dimer indicates that Trp-nucleobase stacking interactions contribute about -4 kcal/mol to recognition, which is much greater than the contribution of nonionic interactions in unstructured peptides containing Trp. Moreover, recognition of the ssDNA demonstrated reduced salt dependence relative to the corresponding duplex, resulting in selectivity for ssDNA under high salt conditions. Peptide (WKWK)2 is a relevant mimic of OB-fold (oligonucleotide/oligosaccharide-binding) proteins which bind ssDNA on the surface of a beta-sheet.  相似文献   

5.
Incorporation of disulfide bonds to stabilize protein and peptide structures is not always a successful strategy. To advance current knowledge on the contribution of disulfide bonds to beta-hairpin stability, a previously reported beta-hairpin-forming peptide was taken as a template to design a series of Cys-containing peptides. The conformational behavior of these peptides in their oxidized, disulfide-cyclized peptides, and reduced, linear peptides, was investigated on the basis of NMR parameters: NOEs, and 1H and 13C chemical shifts. We found that the effect of disulfide bonds on beta-hairpin stability depends on its location within the beta-hairpin structure, being very small or even destabilizing when connecting two hydrogen-bonded facing residues. When the disulfide bond is linking non-hydrogen-bonded facing residues, we estimated that its contribution to the free-energy change of beta-hairpin folding is approximately -1.0 kcal mol(-1). This value is larger than those reported for most beta-hairpin-stabilizing cross-strand side-chain-side-chain interactions, except for some aromatic-aromatic interactions, in particular the Trp-Trp one, and the cation-pi interaction between Trp and the non-natural methylated Arg/Lys. As disulfide bonds are frequently used to stabilize peptide conformations, our conclusions can be useful for peptide, peptidomimetic, and protein design, and may even extend to other chemical cross-links.  相似文献   

6.
BACKGROUND: Two types of biaryl crosslinks can be formed with natural protein sidechains: ditryptophan and dityrosine. Biaryl crosslinks have the same topology as disulfide crosslinks, yet little is known about their effect on local peptide structure. RESULTS: Three ditryptophan-linked peptide dimers based on the sequence Ac-Leu-Trp-Ala-COX were prepared. The tripeptide dimer with -CONH(2) termini was too insoluble to study, but the tripeptide dimer with -COOMe termini crystallized from methanol/chloroform as an antiparallel beta-sheet. The tripeptide dimer with a -CONMe(2) termini adopted a slipped antiparallel beta structure in methanol/chloroform. CONCLUSIONS: These results suggest that intermolecular ditryptophan crosslinks that join the middle of peptide chains can confer a preference for antiparallel beta-sheet structure. The effect is most dramatic when both the inside and outside edges of the dimer can form hydrogen bonds as in the crystal structure of dimer 3b.  相似文献   

7.
Tandem MS sequencing of peptides that contain a disulfide bond is often hampered when using a slow heating technique. We show that complexation of a transition-metal ion with a disulfide-bridge-containing nonapeptide yields very rich tandem mass spectra, including fragments that involve the cleavage of the disulfide bond up to 56% of the total product ion intensity. On the contrary, MS/MS of the corresponding protonated nonapeptides results predominantly in fragments from the region that is not involved in the disulfide bond. Eleven different combinations of three nonapeptides and three metal ions were measured using Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) combined with sustained off-resonance irradiation collision induced dissociation (SORI-CID). All observed fragments are discussed with respect to four different types of product ions: neutral losses, b/y-fragmentation with and without the disulfide bond cleavage, and losses of internal amino acids without rupture of the disulfide bridge. Furthermore, it is shown that the observed complementary fragment pairs obtained from peptide-metal complexes can be used to determine the region of the binding site of the metal ion. This approach offers an efficient way to cleave disulfide-bridged structures using low energy MS/MS, which leads to increased sequence coverage and more confidence in peptide or protein assignments.  相似文献   

8.
Ruthenium-catalysed azide–alkyne cycloaddition (RuAAC) provides access to 1,5-disubstituted 1,2,3-triazole motifs in peptide engineering applications. However, investigation of this motif as a disulfide mimetic in cyclic peptides has been limited, and the structural consequences remain to be studied. We report synthetic strategies to install various triazole linkages into cyclic peptides through backbone cyclisation and RuAAC cross-linking reactions. These linkages were evaluated in four serine protease inhibitors based on sunflower trypsin inhibitor-1. NMR and X-ray crystallography revealed exceptional consensus of bridging distance and backbone conformations (RMSD<0.5 Å) of the triazole linkages compared to the parent disulfide molecules. The triazole-bridged peptides also displayed superior half-lives in liver S9 stability assays compared to disulfide-bridged peptides. This work establishes a foundation for the application of 1,5-disubstituted 1,2,3-triazoles as disulfide mimetics.  相似文献   

9.
Betabellin 15D is a 64-residue, disulfide-bridged homodimer. When folded into a beta structure, the protein is predicted to have two clusters of three histidine residues, each cluster able to bind a divalent metal ion. When the protein was incubated with Cu2+, Zn2+, Co2+, or Mn2+, metal complexes of betabellin 15D were observed by electrospray-ionization mass spectrometry. The relative abundances of the ionic complexes suggested an order of affinities of Cu2+ > Zn2+ > Co2+ > Mn2+, consistent with solution-phase affinities for nitrogen- or sulfur-containing ligands. Limited proteolysis of betabellin 15D by immobilized pepsin, as measured by nanoelectrospray-ionization mass spectrometry, showed that the Phe12-Ser13 peptide bond of betabellin 15D was cleaved more slowly in the presence of Cu2+ than in its absence. Because Cu2+ has little or no effect on the catalytic rate of pepsin, the slower cleavage of the Phe12-Ser13 peptide bond may be due to its decreased accessibility caused by Cu(2+)-induced folding of betabellin 15D.  相似文献   

10.
Endostatin, a C-terminal fragment of collagen XVIII, is a promising protein drug which is in development for cancer therapy due to its anti-angiogenic activity. Although several endogenous molecular forms of human endostatin differing in their N-terminal length and their post-translational modifications (18.5-22 kDa) have been discovered, only one recombinant form of 20 kDa is used in clinical trials. This protein, recombinantly expressed in Pichia pastoris, contains four cysteines forming two disulfide bonds (Cys1-Cys4 and Cys2-Cys3). In contrast, there are conflicting data about the disulfide pattern of endogenous material. This report presents the disulfide analyses of both the endogenous circulating endostatins isolated from human hemofiltrate and the recombinant protein. The determination of the disulfide pattern was performed by Edman degradation, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) and electrospray ionization ion trap mass spectrometry (ESI-ITMS) performed in the off-line nanospray mode. All native and recombinant endostatins exhibited a Cys1-Cys4 (Cys(162)-Cys(302)) and Cys2-Cys3 (Cys(264)-Cys(294)) linkage. For a clear discussion of fragmented disulfide-bridged peptide chains obtained from MS(n) experiments, a modified general nomenclature is proposed.  相似文献   

11.
Disulfide bond‐containing peptides are useful molecular scaffolds with diagnostic and therapeutic applications due to their good biological activity and good target selectivity, but their utility is sometimes limited by the lability of the disulfide moiety under reducing conditions and in the presence of disulfide bond isomerase. The development of disulfide surrogates with improved redox stability has been an area of ongoing research; and one possible strategy is based on a diaminodiacid (DADA) moiety, which can be used to synthesize the disulfide bond replacement peptides with precise structures and enhanced stability through automated solid‐phase peptide synthesis (SPPS). This review summarizes recent developments in the DADA‐based SPPS of peptide disulfide surrogates. Some representative applications and structural studies on the DADA‐based disulfide surrogates are described.  相似文献   

12.
This paper reports the design, synthesis, and characterization of a family of cyclic peptides that mimic protein quaternary structure through beta-sheet interactions. These peptides are 54-membered-ring macrocycles comprising an extended heptapeptide beta-strand, two Hao beta-strand mimics [JACS 2000, 122, 7654] joined by one additional alpha-amino acid, and two delta-linked ornithine beta-turn mimics [JACS 2003, 125, 876]. Peptide 3a, as the representative of these cyclic peptides, contains a heptapeptide sequence (TSFTYTS) adapted from the dimerization interface of protein NuG2 [PDB ID: 1mio]. 1H NMR studies of aqueous solutions of peptide 3a show a partially folded monomer in slow exchange with a strongly folded oligomer. NOE studies clearly show that the peptide self-associates through edge-to-edge beta-sheet dimerization. Pulsed-field gradient (PFG) NMR diffusion coefficient measurements and analytical ultracentrifugation (AUC) studies establish that the oligomer is a tetramer. Collectively, these experiments suggest a model in which cyclic peptide 3a oligomerizes to form a dimer of beta-sheet dimers. In this tetrameric beta-sheet sandwich, the macrocyclic peptide 3a is folded to form a beta-sheet, the beta-sheet is dimerized through edge-to-edge interactions, and this dimer is further dimerized through hydrophobic face-to-face interactions involving the Phe and Tyr groups. Further studies of peptides 3b-3n, which are homologues of peptide 3a with 1-6 variations in the heptapeptide sequence, elucidate the importance of the heptapeptide sequence in the folding and oligomerization of this family of cyclic peptides. Studies of peptides 3b-3g show that aromatic residues across from Hao improve folding of the peptide, while studies of peptides 3h-3n indicate that hydrophobic residues at positions R3 and R5 of the heptapeptide sequence are important in oligomerization.  相似文献   

13.
Here, we report a new strategy for rapid synthesis of branched peptide by side-chain hydrazide ligation at Asn. The hydrazide was converted to thioester at Asn side chain by NaNO2 and thiol reagent, and sequential ligation with an N-terminus Cys-peptide efficiently afforded the branched peptide. A branched cyclic peptide was successfully synthesized by side-chain ligation with a two-Cys-peptide and formation of a disulfide bond. This approach provides a new way for expeditious synthesis of branched peptides and facilitates the design of neopeptides as functional bio-mimics.  相似文献   

14.
A 30-residue peptide, BS30, which incorporates two proline residues to induce reverse turns, was designed to form a triple-stranded beta-sheet monolayer at the air-water interface. To discern the structural role of proline, a second peptide, BS30G, identical to BS30 but with glycine residues replacing proline, was prepared and examined in parallel fashion. Surface pressure-molecular area isotherms indicated a limiting area per molecule (ca. 460 A(2)) for BS30 that corresponds well to that estimated from the known dimensions of crystalline beta-sheet monolayers (492 A(2)). Comparable measurements on BS30G yielded a smaller molecular area (380 A(2)). Grazing incidence X-ray diffraction measurements performed on the BS30 monolayer at nominal area per molecule of 500 A(2), exhibited two Bragg peaks corresponding to 4.79 and 34.9 A spacings, consistent with formation of triple-stranded beta-sheet structures that assemble into two-dimensional crystallites at the air-water interface. Visualized by Brewster angle microscopy, BS30 monolayers displayed uniform, solidlike domains, whereas BS30G appeared to be disordered.  相似文献   

15.
This paper describes the design, synthesis, and structural evaluation of a compound (4) comprising three molecular templates and a peptide strand that mimics a three-stranded protein beta-sheet. Two of the templates mimic the hydrogen-bonding functionality of peptide beta-strands and serve as the top and bottom strands by embracing the peptide strand, which is located in the middle of the sheet. The remaining template holds the three strands next to each other. The synthesis of artificial beta-sheet 4 begins with the bottom template and involves the sequential addition of the middle and top strands. (1)H NMR chemical shift and NOE studies establish that this compound folds to adopt a hydrogen-bonded beta-sheetlike structure in CDCl(3) solution. Chemical shift studies indicate that triply stranded artificial beta-sheet 4 is more tightly folded than its smaller doubly stranded homologue, artificial beta-sheet 1.  相似文献   

16.
Therapeutic applications of peptides are currently limited by their proteolytic instability and impermeability to the cell membrane. A general, reversible bicyclization strategy is now reported to increase both the proteolytic stability and cell permeability of peptidyl drugs. A peptide drug is fused with a short cell‐penetrating motif and converted into a conformationally constrained bicyclic structure through the formation of a pair of disulfide bonds. The resulting bicyclic peptide has greatly enhanced proteolytic stability as well as cell‐permeability. Once inside the cell, the disulfide bonds are reduced to produce a linear, biologically active peptide. This strategy was applied to generate a cell‐permeable bicyclic peptidyl inhibitor against the NEMO‐IKK interaction.  相似文献   

17.
A general strategy was developed for the intracellular delivery of linear peptidyl ligands through fusion to a cell‐penetrating peptide and cyclization of the fusion peptides via a disulfide bond. The resulting cyclic peptides are cell permeable and have improved proteolytic stability. Once inside the cell, the disulfide bond is reduced to produce linear biologically active peptides. This strategy was applied to generate a cell‐permeable peptide substrate for real‐time detection of intracellular caspase activities during apoptosis and an inhibitor for the CFTR‐associated ligand (CAL) PDZ domain as a potential treatment for cystic fibrosis.  相似文献   

18.
Three terminally protected short peptides Bis[Boc-D-Leu1-Cys2-OMe] 1, Bis[Boc-Leu1-Cys2-OMe] and Bis[Boc-Val1-Cys2-OMe] 3 exhibit amyloid-like fibrillar morphology. Single crystal X-ray diffraction analysis of peptide 1 clearly demonstrates that it adopts an overall extended backbone molecular conformation that self-assembles to form an intermolecular hydrogen-bonded antiparallel supramolecular beta-sheet structure in crystals. Scanning electron microscopic (SEM) images, transmission electron microscopic (TEM) images and Congo red binding studies vividly demonstrate the amyloid-like fibril formation of peptides 1, 2 and 3. However, after reduction of the disulfide bridge of peptides 1, 2 and 3, three newly generated peptides Boc-D-Leu1-Cys2-OMe 4, Boc-Leu1-Cys2-OMe 5 and Boc-Val1-Cys2-OMe 6 are formed and all of them failed to form any kind of fibril under the same conditions, indicating the important role of the disulfide bond in amyloid-like fibrillogenesis in a peptide model system.  相似文献   

19.
The efficient Fmoc solid-phase peptide synthesis of the 37-residue human Amylin and its amyloidogenic 8-37 fragment was achieved using pseudoproline (oxazolidine) dipeptide derivatives. Syntheses of hAmylin(8-37) using Fmoc amino acids produced only traces of the desired peptide. Incorporation of pseudoproline dipeptides produced the desired product with high yield and allowed for the synthesis of the full length peptide. The crude material was pure enough to allow formation of the Cys-2 to Cys-7 disulfide by air oxidation. [Structure: see text]  相似文献   

20.
To potentially cure neurodegenerative diseases, we need to understand on a molecular level what triggers the complex folding mechanisms and shifts the equilibrium from functional to pathological isoforms of proteins. The development of small peptide models that can serve as tools for such studies is of paramount importance. We describe the de novo design and characterization of an alpha-helical coiled coil based model peptide that contains structural elements of both alpha-helical folding and beta-sheet formation. Three distinct secondary structures can be induced at will by adjustment of pH or concentration. Low concentrations at pH 4.0 yield globular particles of the unfolded peptide, while at the same pH, but at higher concentration, defined beta-sheet ribbons are formed. In contrast, at high concentrations and pH 7.4, the peptide forms highly ordered alpha-helical fibers. Thus, this system allows one to systematically study now the consequences of the interplay between peptide and protein primary structure and environmental factors for peptide and protein folding on a molecular level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号