首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
The energy-transfer dynamics between highly vibrationally excited azulene molecules and Kr atoms in a series of collision energies (i.e., relative translational energies 170, 410, and 780 cm(-1)) was studied using a crossed-beam apparatus along with time-sliced velocity map ion imaging techniques. "Hot" azulene (4.66 eV internal energy) was formed via the rapid internal conversion of azulene initially excited to the S4 state by 266-nm photons. The shapes of the collisional energy-transfer probability density functions were measured directly from the scattering results of highly vibrationally excited or hot azulene. At low enough collision energies an azulene-Kr complex was observed, resulting from small amounts of translational to vibrational-rotational (T-VR) energy transfer. T-VR energy transfer was found to be quite efficient. In some instances, nearly all of the translational energy is transferred to vibrational-rotational energy. On the other hand, only a small fraction of vibrational energy is converted to translational energy (V-T). The shapes of V-T energy-transfer probability density functions were best fit by multiexponential functions. We find that substantial amounts of energy are transferred in the backward scattering direction due to supercollisions at high collision energies. The probability for supercollisions, defined arbitrarily as the scattered azulene in the region 160 degrees 2000 cm(-1) is 1% and 0.3% of all other collisions at collision energies 410 and 780 cm(-1), respectively.  相似文献   

2.
Energy transfer between highly vibrationally excited naphthalene and Kr atom in a series of translational collision energies (108-847 cm(-1)) was studied separately using a crossed-beam apparatus along with time-sliced velocity map ion imaging techniques. Highly vibrationally excited naphthalene in the triplet state (vibrational energy: 16,194 cm(-1); electronic energy: 21,400 cm(-1)) was formed via the rapid intersystem crossing of naphthalene initially excited to the S(2) state by 266 nm photons. The collisional energy transfer probability density functions were measured directly from the scattering results of highly vibrationally excited naphthalene. At low collision energies a short-lived naphthalene-Kr complex was observed, resulting in small amounts of translational to vibrational-rotational (T-->VR) energy transfer. The complex formation probability decreases as the collision energy increases. T-->VR energy transfer was found to be quite efficient at all collision energies. In some instances, nearly all of the translational energy is transferred to vibrational-rotational energy. On the other hand, only a small fraction of vibrational energy is converted to translational energy. The translational energy gained from vibrational energy extend to large energy transfer (up to 3000 cm(-1)) as the collision energy increases to 847 cm(-1). Substantial amounts of large V-->T energy transfer were observed in the forward and backward directions at large collision energies.  相似文献   

3.
The rotational effects in the energy transfer between Kr atoms and highly vibrationally excited naphthalene in the triplet state were investigated using crossed-beam/time-sliced velocity map ion imaging at various translational collision energies. As the initial rotational temperature changes from less than 10 to approximately 350 K, the ratio of vibrational to translational (V-->T) energy transfer cross section to translational to vibrational/rotational (T-->VR) energy transfer cross section increases, but the probability of forming a complex during the collisions decreases. Significant increases in the large V-->T energy transfer probabilities, termed supercollisions, at high initial rotational temperature were observed.  相似文献   

4.
We report the energy dependence of strong collisions of CO(2) with highly vibrationally excited azulene for two initial energies, E=20 390 and 38 580 cm(-1). These studies show that both the distribution of transferred energy and the energy transfer rates are sensitive to the azulene energy. Highly excited azulene was prepared in separate studies by absorption of pulsed excitation at lambda=532 or 266 nm, followed by rapid radiationless decay from S(1) or S(4) to vibrationally excited levels of the ground electronic state. The appearance of scattered CO(2) (00(0)0) molecules with E(rot)>1000 cm(-1) was monitored by high-resolution transient IR absorption at lambda=4.3 mum. The average rotational and translational energies of the scattered CO(2) molecules double when the azulene energy is increased by a factor of 2. The rate of energy transfer in strong collisions increases by nearly a factor of 4 when the azulene energy is doubled. The energy transfer probability distribution function for DeltaE>3000 cm(-1) at each initial energy is an exponential decay with curvature that correlates with the energy dependence of the state density, in excellent agreement with predictions from GRETCHEN, a model based on Fermi's golden rule to describe collisional quenching of highly excited molecules.  相似文献   

5.
Several aspects of the time-dependent-thermal-lensing (TDTL) technique were explored experimentally, including pressure effects, risetime behavior and falltime behavior. The experiments were performed using azulene vapor excited to high vibrational energies (≈ 17000 cm?1). It was found that the energy appears in translational degrees of freedom at very early times, but the intrinsic limitations of the technique permitted only an estimate of the V-T rate constant for excited azulene deactivation by krypton. The result is discussed in terms of other recent experiments, and it is tentatively concluded that deactivation of excited azulene by unexcited azulene molecules may proceed primarily by a V-V process.  相似文献   

6.
The vibrational energy dissipation process of the ground-state azulene in supercritical xenon, carbon dioxide, and ethane has been studied by the transient grating spectroscopy. In this method, azulene in these fluids was photoexcited by two counterpropagating subpicosecond laser pulses at 570 nm, which created a sinusoidal pattern of vibrationally hot ground-state azulene inside the fluids. The photoacoustic signal produced by the temperature rise of the solvent due to the vibrational energy relaxation of azulene was monitored by the diffraction of a probe pulse. The temperature-rise time constants of the solvents were determined at 383 and 298 K from 0.7 to 2.4 in rho(r), where rho(r) is the reduced density by the critical density of the fluids, by the fitting of the acoustic signal based on a theoretical model equation. In xenon, the temperature-rise time constant was almost similar to the vibrational energy-relaxation time constant of the photoexcited solute determined by the transient absorption measurement [D. Schwarzer, J. Troe, M. Votsmeier, and M. Zerezke, J. Chem. Phys. 105, 3121 (1996)] at the same reduced density irrespective of the solvent temperature. On the other hand, the temperature-rise time constants in ethane were larger than the vibrational energy-relaxation time constants by a factor of about 2. In carbon dioxide, the difference was small. From these results, the larger time constants of the solvent temperature rise than those of the vibrational energy relaxation in ethane and carbon dioxide were interpreted in terms of the vibrational-vibrational (V-V) energy transfer between azulene and solvent molecules and the vibrational-translational (V-T) energy transfer between solvent molecules. The contribution of the V-V energy transfer process against the V-T energy transfer process has been discussed.  相似文献   

7.
The energy transfer between Kr atoms and highly vibrationally excited, rotationally cold phenanthrene and diphenylacetylene in the triplet state was investigated using crossed-beam/time-of-flight mass spectrometer/time-sliced velocity map ion imaging techniques. Compared to the energy transfer between naphthalene and Kr, energy transfer between phenanthrene and Kr shows a larger cross-section for vibrational to translational (V → T) energy transfer, a smaller cross-section for translational to vibrational and rotational (T → VR) energy transfer, and more energy transferred from vibration to translation. These differences are further enlarged in the comparison between naphthalene and diphenylacetylene. In addition, less complex formation and significant increases in the large V → T energy transfer probabilities, termed supercollisions in diphenylacetylene and Kr collisions were observed. The differences in the energy transfer between these highly vibrationally excited molecules are attributed to the low-frequency vibrational modes, especially those vibrations with rotation-like wide-angle motions.  相似文献   

8.
This paper is the third and last in a series of papers that deal with collisional energy transfer, CET, between aromatic polyatomic molecules. Paper 1 of this series (J. Phys. Chem. B 2005, 109, 8310) reports on the mechanism and quantities of CET between an excited benzene and cold benzene and Ar bath. Paper 2 in the series (J. Phys. Chem., in press) discusses CET between excited toluene, p-xylene and azulene with cold benzene and Ar and CET between excited benzene colliding with cold toluene, p-xylene and azulene. The present work reports on CET in self-collisions of benzene, toluene, p-xylene and azulene. Two modes of excitation are considered, identical excitation energies and identical vibrational temperatures for all four molecules. It compares the present results with those of papers 1 and 2 and reports new findings on average vibrational, rotational, and translational energy, , transferred in a single collision. CET takes place mainly via vibration to vibration energy transfer. The effect of internal rotors on CET is discussed and CET quantities are reported as a function of temperature and excitation energy. It is found that the temperature dependence of CET quantities is unexpected, resembling a parabolic function. The density of vibrational states is reported and its effect on CET is discussed. Energy transfer probability density functions, P(E,E'), for various collision pairs are reported and it is shown that the shape of the curves is convex at low temperatures and can be concave at high temperatures. There is a large supercollision tail at the down wing of P(E,E'). The mechanisms of CET are short, impulsive collisions and long-lived chattering collisions where energy is transferred in a sequence of short internal encounters during the lifetime of the collision complex. The collision complex lifetimes as a function of temperature are reported. It is shown that dynamical effects control CET. A comparison is made with experimental results and it is shown that good agreement is obtained.  相似文献   

9.
Energy transfer of highly vibrationally excited naphthalene in the triplet state in collisions with CHF(3), CF(4), and Kr was studied using a crossed-beam apparatus along with time-sliced velocity map ion imaging techniques. Highly vibrationally excited naphthalene (2.0 eV vibrational energy) was formed via the rapid intersystem crossing of naphthalene initially excited to the S(2) state by 266 nm photons. The shapes of the collisional energy-transfer probability density functions were measured directly from the scattering results of highly vibrationally excited naphthalene. In comparison to Kr atoms, the energy transfer in collisions between CHF(3) and naphthalene shows more forward scatterings, larger cross section for vibrational to translational (V → T) energy transfer, smaller cross section for translational to vibrational and rotational (T → VR) energy transfer, and more energy transferred from vibration to translation, especially in the range -ΔE(d) = -100 to -800 cm(-1). On the other hand, the difference of energy transfer properties between collisional partners Kr and CF(4) is small. The enhancement of the V → T energy transfer in collisions with CHF(3) is attributed to the large attractive interaction between naphthalene and CHF(3) (1-3 kcal/mol).  相似文献   

10.
Collisional energy transfer, CET, is of major importance in chemical, photochemical, and photophysical processes in the gas phase. In Paper I of this series (J. Phys. Chem. B 2005, 109, 8310) we have reported on the mechanism and quantities of CET between an excited benzene and cold benzene and Ar bath. In the present work, we report on CET between excited toluene, p-xylene, and azulene with cold benzene and Ar and on CET of excited benzene with cold toluene, p-xylene, and azulene. We compare our results with those of Paper I and report average vibrational, rotational, and translational energy quantities, , transferred in a single collision. We discuss the effect of internal rotation on CET and the identity of the gateway modes in CET and the relative role of vibrational, rotational, and translational energies in the CET process, all that as a function of temperature and excitation energy. Energy transfer probability density functions, P(E,E'), for the various systems are reported and the shape of the curves for various systems and initial conditions is discussed. The major findings for polyatomic-polyatomic collisions are: CET takes place mainly via vibration-to-vibration energy transfer assisted by overall rotations. Internal free rotors in the excited molecule hinder energy exchange while in the bath molecule they do not. Energy transfer at low temperatures and high temperatures is more efficient than that at intermediate temperatures. Low-frequency modes are the gateway modes for energy transfer. Vibrational temperatures affect energy transfer. The CET probability density function, P(E,E'), is convex at low temperatures and can be concave at high temperatures. A mechanism that explains the high values of and the convex shape of P(E,E') is that in addition to short impulsive collisions there are chattering collisions where energy is transferred in a sequence of short encounters during the lifetime of the collision complex. This also leads to the observed supercollision tail at the down wing of P(E,E'). Polyatomic-Ar collisions show mechanistic similarities to polyatomic-polyatomic collisions, but there are also many dissimilarities: internal rotations do not inhibit energy transfer, P(E,E') is concave at all temperatures, and there is no contribution of chattering collisions.  相似文献   

11.
The vibrational energy dissipation process of the ground-state azulene in various liquids has been studied by the transient grating spectroscopy. The acoustic signal produced by the temperature rise of the solvent due to the vibrational energy relaxation of azulene was monitored. The temperature rise-time constant of the solvent has been determined both by the fitting of the acoustic signal to a theoretical model equation and by the analysis of the acoustic peak shift. We found that the temperature rise-time constants determined by the transient grating method in various solvents are larger than the vibrational energy relaxation time constants determined by the transient absorption measurement [D. Schwarzer, J. Troe, M. Votsmeier, and M. Zerezke, J. Chem. Phys. 105, 3121 (1996)]. The difference is explained by different energy dissipation pathways from azulene to solvent; vibrational-vibrational (V-V) energy transfer and vibrational-translational (V-T) energy transfer. The contribution of the V-V energy transfer is estimated in various liquid solvents from the difference between the temperature rise time and vibrational energy relaxation time, and the solvent V-T relaxation time.  相似文献   

12.
The vibrational energy dependence, H and D atom isotope effects, and the mass effects in the energy transfer between rare gas atoms and highly vibrationally excited naphthalene in the triplet state were investigated using crossed-beam/time-sliced velocity-map ion imaging at various translational collision energies. Increase of vibrational energy from 16 194 to 18 922 cm(-1) does not make a significant difference in energy transfer. The energy transfer properties also remain the same when H atoms in naphthalene are replaced by D atoms, indicating that the high vibrational frequency modes do not play important roles in energy transfer. They are not important in supercollisions either. However, as the Kr atoms are replaced by Xe atoms, the shapes of energy transfer probability density functions change. The probabilities for large translation to vibration/rotation energy transfer (T-->VR) and large vibration to translation energy transfer (V-->T) decrease. High energy tails in the backward scatterings disappear, and the probability for very large vibration to translation energy transfer such as supercollisions also decreases.  相似文献   

13.
The energy transfer between Kr atoms and highly vibrationally excited, rotationally cold biphenyl in the triplet state was investigated using crossed-beam/time-of-flight mass spectrometer/time-sliced velocity map ion imaging techniques. Compared to the energy transfer of naphthalene, energy transfer of biphenyl shows more forward scattering, less complex formation, larger cross section for vibrational to translational (V→T) energy transfer, smaller cross section for translational to vibrational and rotational (T→VR) energy transfer, larger total collisional cross section, and more energy transferred from vibration to translation. Significant increase in the large V→T energy transfer probabilities, termed supercollisions, was observed. The difference in the energy transfer of highly vibrationally excited molecules between rotationally cold naphthalene and rotationally cold biphenyl is very similar to the difference in the energy transfer of highly vibrationally excited molecules between rotationally cold naphthalene and rotationally hot naphthalene. The low-frequency vibrational modes with out-of-plane motion and rotationlike wide-angle motion are attributed to make the energy transfer of biphenyl different from that of naphthalene.  相似文献   

14.
用准经典轨线(QCT)方法计算了高振动激发态吡嗪(C4N2H4)与N2、O2、NH3、基态吡嗪之间的碰撞传能. C4N2H4通过计算发现, 高振动激发态C4N2H4与N2、O2碰撞发生的主要是V-V传能, 与NH3碰撞发生的主要是V-R传能, 与基态C4N2H4碰撞发生的主要是V-V(R)传能. 通过比较高振动激发态C4N2H4、C6F6、C6H6与其基态分子的碰撞传能, 发现此类碰撞传能中, 若分子的对称性高, 则V-V传能更容易实现.  相似文献   

15.
Collisional energy-transfer probability distribution functions of highly vibrationally excited molecules and the existence of supercollisions remain as the outstanding questions in the field of intermolecular energy transfer. In this investigation, collisional interactions between ground state Kr atoms and highly vibrationally excited azulene molecules (4.66 eV internal energy) were examined at a collision energy of 410 cm-1 using a crossed molecular beam apparatus and time-sliced ion imaging techniques. A large amount of energy transfer (1000-5000 cm-1) in the backward direction was observed. We report the experimental measurement for the shape of the energy-transfer probability distribution function along with a direct observation of supercollisions.  相似文献   

16.
The internal energy distributions of product CaBr in the collision reactions Ca+C2H5Br and Ca+nC3H7Br are studied by using the quasiclassical trajectory method. The average vibrational, rotational and translational energies and total available energies of the product CaBr molecules are calculated. The results indicate that when the collision energy is equal to 7.54 kJ/mol the energy of product CaBr is mainly the vibrational energy. As the reactant collision energy increases, the average translational and rotational energies of the product CaBr increase, the average vibrational energy decreases slightly, and the most probable vibrational state shifts to lower vibrational energy levels. The internal states of reagents have little influence on the internal energy distribution of the product. The bigger the radical group is, the higher ratio of the vibrational energy to the available energy of the product is. There exist two competitive reaction paths for the collision reactions Ca+C2H5Br and Ca+nC3H7Br, the migratory encounter and direct reaction paths. The former produces high vibrational excited state product CaBr and the latter causes C-Br bond to break. When the collision energy increases, the reactions tend to the latter path.  相似文献   

17.
V—V energy transfer from a large molecule excited to vibrational energies of chemical interest has been demonstrated by detection of ≈ 1.5% yield of CO2(001) due to energy transfer from azulene (Evib ≈ 30600 cm?1. Also, the average enery lost per collision by azulene was measured as a function of Evib, and the rate constant for CO2(001) deactivation by azulene was determined.  相似文献   

18.
This article describes the analysis and interpretation of rovibrational spectra involving highly excited vibrational states in the molecule of HCN. The spectra were obtained by means of the vibrationally mediated photodissociation technique. Analysis of the spectra revealed four bands with Sigma-Sigma structures that, once fitted, provided the energies and rotational constants of four new, highly excited vibrational states in the region of the potential energy surface near and above 30 000 cm(-1). All the states could be identified with the help of a state-of-the-art variational calculation. Together with the states already observed in previous works, eight highly excited states have so far been identified in this region.  相似文献   

19.
On the basis of an analytical potential energy surface for the electronic ground state of the Na+ + H2 system reported recently, extensive trajectory calculations have been performed to study the collision dynamics of vibrationally inelastic processes at total energies up to ~3 eV. Special attention is given to the relative efficiacy of translational and rotational energy, respectively, in promoting vibrational energy transfer. Vibrational transitions are found to be substantially enhanced by initial molecular rotation. Furthermore, the applicability of simple models is discussed.  相似文献   

20.
Quasiclassical trajectory calculations have been performed for the H + H'X(v) → X + HH' abstraction and H + H'X(v) → XH + H' (X = Cl, F) exchange reactions of the vibrationally excited diatomic reactant at a wide collision energy range extending to ultracold temperatures. Vibrational excitation of the reactant increases the abstraction cross sections significantly. If the vibrational excitation is larger than the height of the potential barrier for reaction, the reactive cross sections diverge at very low collision energies, similarly to capture reactions. The divergence is quenched by rotational excitation but returns if the reactant rotates fast. The thermal rate coefficients for vibrationally excited reactants are very large, approach or exceed the gas kinetic limit because of the capture-type divergence at low collision energies. The Arrhenius activation energies assume small negative values at and below room temperature, if the vibrational quantum number is larger than 1 for HCl and larger than 3 for HF. The exchange reaction also exhibits capture-type divergence, but the rate coefficients are larger. Comparisons are presented between classical and quantum mechanical results at low collision energies. At low collision energies the importance of the exchange reaction is enhanced by a roaming atom mechanism, namely, collisions leading to H atom exchange but bypassing the exchange barrier. Such collisions probably have a large role under ultracold conditions. The calculations indicate that for roaming to occur, long-range attractive interaction and small relative kinetic energy in the chemical reaction at the first encounter are necessary, which ensures that the partners can not leave the attractive well. Large orbital angular momentum of the primary products (equivalent to large rotational excitation in a unimolecular reaction) is favorable for roaming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号