首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dissociative recombination of ammonia cluster ions with free electrons has been studied at the heavy-ion storage ring CRYRING (Manne Siegbahn Laboratory, Stockholm University). The absolute cross sections for dissociative recombination of H+(NH3)2, H+(NH3)3, D+(ND3)2, and D+(ND3)3 in the collision energy range of 0.001-27 eV are reported, and thermal rate coefficients for the temperature interval from 10 to 1000 K are calculated from the experimental data and compared with earlier results. The fragmentation patterns for the two ions H+(NH3)2 and D+(ND3)2 show no clear isotope effect. Dissociative recombination of X+(NX3)2 (X=H or D) is dominated by the product channels 2NX3+X [0.95+/-0.02 for H+(NH3)2 and 1.00+/-0.02 for D+(ND3)2]. Dissociative recombination of D+(ND3)3 is dominated by the channels yielding three N-containing fragments (0.95+/-0.05).  相似文献   

2.
The equilibrium structure and potential energy surface of beryllium dihydride BeH(2) in its ground electronic state have been determined from highly accurate ab initio calculations. The vibration-rotation energy levels of three isotopomers BeH(2), BeD(2), and BeHD were predicted using the variational method. The calculated spectroscopic constants are in remarkably good agreement with the existing experimental data (sub-cm(-1) accuracy) and should be useful in a further analysis of high-resolution vibration-rotation spectra of all three isotopomers.  相似文献   

3.
The properties of six dihydrogen-bonded (DHB) dimers with the BeH2 molecule as a proton acceptor were calculated by MP2, CCSD(T) and B3LYP methods. The structural, energetic and spectroscopic parameters are presented and analyzed in terms of their possible correlation with the interaction energy and the intermolecular H...H separation. The symmetry-adapted perturbation theory (SAPT) calculations were performed to gain more insight into the nature of the H...H interactions. The studied complexes are divided into three groups based on the calculated intermolecular distances and the interaction energies which range from approximately -1 to -42 kJ mol(-1). The analysis of the interaction energy components indicates that, in contrast to conventional hydrogen bonds, the induction energy is the most important term in the BeH2NH4+ complex. On the other hand, there is no sharp boundary between the DHB complexes classified as hydrogen bonded and van der Waals systems. The complexation-induced changes in vibrational frequencies and in proton shielding constants show a relationship with the interaction energy. The values of the 2hJXH and 3hJBeX coupling constants correlate well with the interaction energy and with the intermolecular distance.  相似文献   

4.
Monovalent cations (M+ = Na+, K+, Rb+, and NH4+) and 12-crown-4 were assembled to new supramolecular cation (SC+) structures of the M+(12-crown-4)n (n = 1 and 2), which were incorporated into the electrically conducting Ni(dmit)2 salts (dmit = 2-thioxo-1,3-dithiole-4,5-dithiolate). The Na+, K+, and Rb+ salts are isostructural with a stoichiometry of the M+(12-crown-4)2[Ni(dmit)2]4, while the NH4+ salt has a stoichiometry of NH4+(12-crown-4)[Ni(dmit)2]3(CH3CN)2. The electrical conductivities of the Na+, K+, Rb+, and NH4+ salts at room temperature are 7.87, 4.46, 0.78, and 0.14 S cm-1, respectively, with a semiconducting temperature dependence. The SC+ structures of the Na+, K+, and Rb+ salts have an ion-capturing sandwich-type cavity of M+(12-crown-4)2, in which the M+ ion is coordinated by eight oxygen atoms of the two 12-crown-4 molecules. On the other hand, the NH4+ ion is coordinated by four oxygen atoms of the 12-crown-4 molecule. Judging from the M(+)-O distances, thermal parameters of oxygen atoms, and vibration spectra, the thermal fluctuation of the Na+(12-crown-4)2 structure is larger than those of K+(12-crown-4)2 and Rb+(12-crown-4)2. The SC+ unit with the larger alkali metal cation gave a stress to the Ni(dmit)2 column, and the SC+ structure changed the pi-pi overlap mode and electrically conducting behavior.  相似文献   

5.
利用激光溅射-分子束技术研究了Mg+、 Al+与乙腈分子的气相团簇反应.根据反射式飞行时间质谱检测的结果发现, Mg+、 Al+与乙腈分子反应形成不同尺寸的团簇离子产物,其中Al+与(CHCN)n的结合数n=1~10,而Mg+与(CHCN)n的结合数n=1~5. Al+(CHCN)n、 Mg+(CHCN)n团簇离子产物的强度分布都存在明显的强度间隙现象. Al+与(CHCN)n进行缔合时,出现了两个强度间隙;而Mg+与(CHCN)n进行缔合时,则只存在一个强度间隙. Al+的第一强度间隙在n=4~5,第二强度间隙在n=6~7;而Mg+的强度间隙在n=2~3.  相似文献   

6.
Mass-resolved two-photon (1+1) resonance-enhanced multiphoton ionization spectra of the ~A-X transitions of various methylamine isotopomers (CH(3)NHD, CD(3)NH(2), CD(3)NHD, and CD(3)ND(2)) cooled in the supersonic jet expansion have been measured and analyzed. The band analysis using the Hamiltonian for the internal and overall rotational motions provides the accurate vibrational band positions, allowing for unambiguous assignments for all observed vibrational bands of methylamine isotopomers in the ~A states. Amino wagging (nu(9)) and methyl rocking (nu(7)) modes are found to be Franck-Condon active, and associated anharmonicity constants are precisely determined to give the detailed shape of the potential energy surface in the vicinity of the minimum electronic molecular structure. The barrier height for the nearly free internal rotation about the C-N bond in the ~A state is calculated to be strongly dependent on the excitation of the other higher-frequency vibrational modes, and it is found that the trend is consistent with the experiment. Experimentally measured spectroscopic constants are compared with ab initio calculations, confirming all vibronic assignments. Experimental and theoretical results on all possible HD isotopomers of methylamine in this work, with the earlier report on CH(3)NH(2) and CH(3)ND(2) Baek et al., [J. Chem. Phys. 118, 11026 (2003)], provide the complete spectroscopic characterization of the A state of methylamine.  相似文献   

7.
The isomerization of complex [Cp*Fe(dppe)(eta2-H2)]+, generated in situ by low-temperature protonation of Cp*Fe(dppe)H with either HBF4 or CF3COOH, to the dihydride tautomer trans-[Cp*Fe(dppe)(H)2]+ is irreversible and follows first-order kinetics in the -10 to +15 degrees C range with Delta H double dagger = 21.6 +/- 0.8 kcal mol(-1) and DeltaS double dagger = 5 +/- 3 eu. The isomerization rate constant is essentially independent of the nature and quantity of a strong acid. Density functional theory (DFT) calculations on various models, including the complete system at both the quantum mechanics/molecular mechanics (QM/MM) and full QM levels, probe the relative importance of steric and electronic effects for the relative stability of the nonclassical and classical isomers and identify two likely isomerization mechanisms: a "direct" pathway involving simultaneous H-H bond breaking and cis-trans isomerization and a "via Cp" pathway involving agostic C5Me5H intermediates. Both pathways are characterized by activation energies in close correspondence with the experimental value (21.3 and 22.2 kcal mol(-1), respectively). Further kinetic studies were carried out for the Cp*Fe(dppe)H + CF3COOD and Cp*Fe(dppe)D + CF3COOD systems at 273 K. The [Cp*Fe(dppe)(eta2-HD)]+ complex establishes a very rapid isotope redistribution equilibrium with the eta2-H2 and eta2-D2 analogues. The equilibrium constant value (K = 3.3 +/- 0.3) indicates a significant equilibrium isotope effect. Simulation of the rate data provides access to the individual isomerization rate constants kHH, kHD, and kDD for the three isotopomers, yielding kinetic isotope effects: kHH/kHD = 1.24 +/- 0.01 and kHD/kDD = 1.58 +/- 0.01 (and, consequently, kHH/kDD = 1.96 +/- 0.02). The analysis of the DFT-calculated frequencies, using the [Cp*Fe(dhpe)H2]+ model system, for the [Cp*Fe(dhpe)(eta2-XY)]+ isotopomers as well as transition states for the "direct" (TSdir) and "via Cp" (TSrot) pathways (X = H, D) allowed the computation of the expected isotope effects. A comparison with the experiment strongly suggests that the mechanism occurs via the "direct" pathway for the present system, although the small difference in the calculated energy barriers suggests that the "via Cp" pathway may be preferred in other cases.  相似文献   

8.
We report the first rotationally resolved spectroscopic studies on PH3+(X2A2") using zero kinetic energy photoelectron spectroscopy and coherent VUV radiation. The spectra about 8000 cm(-1) above the ground vibrational state of PH3+(X2A2") have been recorded. We observed the vibrational energy level splittings of PH3+(X2A2") due to the tunneling effect in the inversion (symmetric bending) vibration (nu2+). The energy splitting for the first inversion vibrational state (0+/0-) is 5.8 cm(-1). The inversion vibrational energy levels, rotational constants, and adiabatic ionization energies (IEs) for nu2+ = 0-16 have been determined. The bond angles between the neighboring P-H bonds and the P-H bond lengths are also obtained using the experimentally determined rotational constants. With the increasing of the inversion vibrational excitations (nu2+), the bond lengths (P-H) increase a little and the bond angles (H-P-H) decrease a lot. The inversion vibrational energy levels have also been calculated by using one dimensional potential model and the results are in good agreement with the experimental data for the first several vibrational levels. In addition to inversion vibration, we also observed firstly the other two vibrational modes: the symmetric P-H stretching vibration (nu1+) and the degenerate bending vibration (nu4+). The fundamental frequencies for nu1+ and nu4+ are 2461.6 (+/-2) and 1043.9 (+/-2) cm(-1), respectively. The first IE for PH3 was determined as 79670.9 (+/-1) cm(-1).  相似文献   

9.
The gas-phase clustering reactions of OCS+, S2+, H+(OCS), and C2H5+ ions with carbonyl sulfide (OCS) molecules were studied using a pulsed electron-beam high-pressure mass spectrometer and applying density functional theory (DFT) calculations. In the cluster ions OCS+(OCS)(n) and H+(OCS)(OCS)(n), a moderately strong, here referred to as "semi-covalent", bond was formed with n = 1. However, the nature of bonding changed from semi-covalent to electrostatic with n = 1 --> 2. The bond energy of S2(+)(OCS) was determined experimentally to be 12.9 +/- 1 kcal/mol, which is significantly smaller than that of the isovalent S2(+)(CS2) complex (30.9 +/- 1.5 kcal/mol). DFT based calculations predicted the presence of several isomeric structures for H+(OCS)(OCS)(n) complexes. The bond energies in the C2H5+(OCS)(n) clusters showed an irregular decrease for n = 1 --> 2 and 7 --> 8. The nonclassical bridge structure for the free C2H5+ isomerized to form a semi-covalent bond with one OCS ligand, [H3CCH2...SCO]+, i.e., reverted to classical structure. However, the nonclassical bridge structure of C2H5+ was preserved in the cluster ions C2H5+(OCS)(n) below 140 K attributable to the lack of thermal energy for the isomerization. DFT calculations revealed that stability orders of the geometric isomers of H+(OCS)(OCS)(n) and C2H5+(OCS)(n) changed with increasing n values.  相似文献   

10.
In this paper we explore several issues surrounding the catalytic reduction of dinitrogen by molybdenum compounds that contain the [(HIPTNCH2CH2)3N]3- ligand (where HIPT = 3,5-(2,4,6-i-Pr3C6H2)2C6H3). Four additional plausible intermediates in the catalytic dinitrogen reduction have now been crystallographically characterized; they are MoN= NH (Mo = [(HIPTNCH2CH2)3N]Mo), [Mo=NNH2][BAr'4] (Ar' = 3,5-(CF3)2C6H3), [Mo=NH][BAr'4], and Mo(NH3). We also have crystallographically characterized a 2,6-lutidine complex, Mo(2,6-Lut)+, which is formed upon treatment of MoH with [2,6-LutH][B(C6F5)4]. We focus on the synthesis of compounds that have not yet been isolated, which include Mo=NNH2, Mo=NH, and Mo(NH2). Mo=NNH2, formed by reduction of [Mo=NNH2]+, has not been observed. It decomposes to give mixtures that contain two or more of the following: MoN=NH, Mo triple bond N, Mo(NH3)+, Mo(NH3), and ammonia. Mo=NH, which can be prepared by reduction of [Mo=NH]+, is stable for long periods in the presence of a small amount of CrCp*2, but in the absence of CrCp*2, and in the presence of Mo=NH+ as a catalyst, Mo=NH is slowly converted into a mixture of Mo triple bond N and Mo(NH2). Mo(NH2) can be produced independently by deprotonation of Mo(NH3)+ with LiN(SiMe3)2 in THF, but it decomposes to Mo triple bond N upon attempted isolation. Although catalytic reduction of dinitrogen could involve up to 14 intermediates in a "linear" sequence that involves addition of "external" protons and/or electrons, it seems likely now that several of these intermediates, along with ammonia and/or dihydrogen, can be produced in several reactions between intermediates that themselves behave as proton and/or electron sources.  相似文献   

11.
The first ansa-aminoborane N-TMPN-CH2C6H4B(C6F5)2 (where TMPNH is 2,2,6,6-tetramethylpiperidinyl) which is able to reversibly activate H2 through an intramolecular mechanism is synthesized. This new substance makes use of the concept of molecular tweezers where the active N and B centers are located close to each other so that one H2 molecule can fit in this void and be activated. Because of the fixed geometry of this ansa-ammonium-borate it forms a short N-H...H-B dihydrogen bond of 1.78 A as determined by X-ray analysis. Therefore, the bound hydrogen can be released above 100 degrees C. In addition, the short H...H contact and the N-H...H (154 degrees) and B-H...H (125 degrees) angles show that the dihydrogen interaction in N-TMPNH-CH2C6H4BH(C6F5)2 is partially covalent in nature. As a basis for discussing the mechanism, quantum chemical calculations are performed and it is found that the energy needed for splitting H2 can arise from the Coulomb attraction between the resulting ionic fragments, or "Coulomb pays for Heitler-London". The air- and moisture-stable N-TMPNH-CH2C6H4BH(C6F5)2 is employed in the catalytic reduction of nonsterically demanding imines and enamines under mild conditions (110 degrees C and 2 atm of H2) to give the corresponding amines in high yields.  相似文献   

12.
Infrared predissociation spectroscopy of vacuum ultraviolet-pumped ion (IRPDS-VUV-PI) is performed on ammonia cluster cations (NH3)n+ (n=2-4) that are produced by VUV photoionization in supersonic jets. The structures of (NH3)2+ and (NH3)4+ are determined through the observation of infrared spectra and vibrational calculations based on ab initio calculations at the MP2/6-31G** and 6-31++G** levels. (NH3)2+ is found to be of the "hydrogen-transferred" form having the (H3N+-...NH2) composition. In contrast, (NH3)4+ exhibits the "head-to-head" dimer cation (H3...NH3+ core structure, where the positive charge is shared between two ammonia molecules in the core, and two other molecules are hydrogen bonded onto the core. An unequivocal assignment of the infrared spectrum of (NH3)3+ has not been achieved, because the presence of two isomeric structures could be suggested by the observed spectrum and theoretical calculations.  相似文献   

13.
A prediction of the formation constants (log K1) for complexes of metal ions with a single NH3 ligand in aqueous solution, using quantum mechanical calculations, is reported. DeltaG values at 298 K in the gas phase for eq 1 (DeltaG(DFT)) were calculated for 34 metal ions using density functional theory (DFT), with the expectation that these would correlate with the free energy of complex formation in aqueous solution (DeltaG(aq)). [M(H2O)6]n+(g) + NH(3)(g) = [M(H2O)5NH3]n+(g) + H2O(g) (eq 1). The DeltaG(aq) values include the effects of complex changes in solvation on complex formation, which are not included in eq 1. It was anticipated that such changes in solvation would be constant or vary systematically with changes in the log K(1) value for different metal ions; therefore, simple correlations between DeltaG(DFT) and DeltaG(aq) were sought. The bulk of the log K1(NH3) values used to calculate DeltaG(aq) were not experimental, but estimated previously (Hancock 1978, 1980) from a variety of empirical correlations. Separate linear correlations between DeltaG(DFT) and DeltaG(aq) for metal ions of different charges (M2+, M3+, and M4+) were found. In plots of DeltaG(DFT) versus DeltaG(aq), the slopes ranged from 2.201 for M2+ ions down to 1.076 for M4+ ions, with intercepts increasing from M2+ to M4+ ions. Two separate correlations occurred for the M3+ ions, which appeared to correspond to small metal ions with a coordination number (CN) of 6 and to large metal ions with a higher CN in the vicinity of 7-9. The good correlation coefficients (R) in the range of 0.97-0.99 for all these separate correlations suggest that the approach used here may be the basis for future predictions of aqueous phase chemistry that would otherwise be experimentally inaccessible. Thus, the log K1(NH3) value for the transuranic Lr3+, which has a half-life of 3.6 h in its most stable isotope, is predicted to be 1.46. These calculations should also lead to a greater insight into the factors governing complex formation in aqueous solution. All of the above DFT calculations involved corrections for scalar relativistic effects (RE). Au has been described (Koltsoyannis 1997) as a "relativistic element". The chief effect of RE for group 11 ions is to favor linear coordination geometry and greatly increase covalence in the M-L bond. The correlation for M+ ions (H+, Cu+, Ag+, Au+) involved the preferred linear coordination of the [M(H2O)2]+ complexes, so that the DFT calculations of DeltaG for the gas-phase reaction in eq 2 were carried out for M = H+, Cu+, Ag+, and Au+. [M(H2O)2]+(g) + NH3(g) = [M(H2O)NH3]+(g) + H2O(g) (eq 2). Additional DFT calculations for eq 2 were carried out omitting corrections for RE. These indicated, in the absence of RE, virtually no change in the log K1(NH3) value for H+, a small decrease for Cu+, and a larger decrease for Ag+. There would, however, be a very large decrease in the log K1(NH3) value for Au(I) from 9.8 (RE included) to 1.6 (RE omitted). These results suggest that much of "soft" acid behavior in aqueous solution in the hard and soft acid-base classification of Pearson may be the result of RE in the elements close to Au in the periodic table.  相似文献   

14.
A previous approach (Hancock, R. D.; Bartolotti, L. J. Inorg. Chem. 2005, 44, 7175) using DFT calculations to predict log K1 (formation constant) values for complexes of NH3 in aqueous solution was used to examine the solution chemistry of Rg(I) (element 111), which is a congener of Cu(I), Ag(I), and Au(I) in Group 1B. Rg(I) has as its most stable presently known isotope a t(1/2) of 3.6 s, so that its solution chemistry is not easily accessible. LFER (Linear free energy relationships) were established between DeltaE(g) calculated by DFT for the formation of monoamine complexes from the aquo ions in the gas phase, and DeltaG(aq) for the formation of the corresponding complexes in aqueous solution. For M2+, M3+, and M4+ ions, the gas-phase reaction was [M(H2O)6]n+(g) + NH3(g) = [M(H2O)5NH3]n+(g) + H2O(g) (1), while for M+ ions, the reaction was [M(H2O)2]+(g) + NH3(g) = [M(H2O)NH3]+(g) + H2O(g) (2). A value for DeltaG(aq) and for DeltaE for the formation of M = Cu2+ in reaction 1, not obtained previously, was calculated by DFT and shown to correlate well with the LFER obtained previously for other M2+ ions, supporting the LFER approach used here. The simpler use of DeltaE values instead of DeltaG(aq) values calculated by DFT for formation of monoamine complexes in the gas phase leads to LFER as good as the DeltaG-based correlations. Values of DeltaE were calculated by DFT to construct LFER with M+ = H+, and the Group 1B metal ions Cu+, Ag+, Au+, and Rg+, and with L = NH3, H2S, and PH3 in reaction 3: [M(H2O)2]+(g) + L(g) = [M(H2O)L]+g) + H2O(g) (3). Correlations involving DeltaE calculated by DMol3 for H+, Cu+, Ag+, and Au+ could reliably be used to construct LFER and estimate unknown log K1 values for Rg(I) complexes of NH3, PH3, and H2S calculated using the ADF (Amsterdam Density Functional) code. Log K1 values for Rg(I) complexes are predicted that suggest the Rg(I) ion to be a very strong Lewis acid that is extremely "soft" in the Pearson hard and soft acids and bases sense.  相似文献   

15.
气相中CrO2+和H2反应的理论研究   总被引:3,自引:0,他引:3  
用密度泛函UB3LYP/6-311++G(3df, 3pdpd)//6-311G(2dd, p)方法计算研究了在二重态和四重态两个势能面上的气相反应:CrO2+ + H2→CrO++ H2O. 对影响反应机理和反应速率的势能面交叉进行了讨论, 并运用Hammond 假设和Yoshizawa 等的内禀反应坐标(IRC)单点垂直激发计算的方法找出了势能面交叉点(crossing point (CP)). 运用碎片分子轨道(fragment molecular orbital(FMO))理论, 对初始复合物2IM1和4IM1的轨道相关进行了分析, 解释了CrO2+活化H—H σ键及H2迁移的机理.  相似文献   

16.
The mechanism of reversible hydrogen activation by ansa-aminoboranes, 1-N-TMPH-CH(2)-2-[HB(C(6)F(5))(2)]C(6)H(4) (NHHB), was studied by neutron diffraction and thermogravimetric mass-spectroscopic experiments in the solid state as well as with NMR and FT-IR spectroscopy in solution. The structure of the ansa-ammonium borate NHHB was determined by neutron scattering, revealing a short N-H···H-B dihydrogen bond of 1.67 ?. Moreover, this intramolecular H-H distance was determined in solution to be also 1.6-1.8 ? by (1)H NMR spectroscopic T(1) relaxation and 1D NOE measurements. The X-ray B-H and N-H distances deviated from the neutron and the calculated values. The dynamic nature of the molecular tweezers in solution was additionally studied by multinuclear and variable-temperature NMR spectroscopy. We synthesized stable, individual isotopic isomers NDDB, NHDB, and NDHB. NMR measurements revealed a primary isotope effect in the chemical shift difference (p)Δ(1)H(D) = δ(NH) - δ(ND) (0.56 ppm), and hence supported dihydrogen bonding. The NMR studies gave strong evidence that the structure of NHHB in solution is similar to that in the solid state. This is corroborated by IR studies providing clear evidence for the dynamic nature of the intramolecular dihydrogen bonding at room temperature. Interestingly, no kinetic isotope effect was detected for the activation of deuterium hydride by the ansa-aminoborane NB. Theoretical calculations attribute this to an "early transition state". Moreover, 2D NOESY NMR measurements support fast intermolecular proton exchange in aprotic CD(2)Cl(2) and C(6)D(6).  相似文献   

17.
The dihydrogen bonds B-H...H-X (X= the complexes of NH3BH3 with HF, HCl, F, Cl, Br, C, O, N) in the dimer (NH3BH3)2 and HBr, H2CO, H20, and CH3OH were theoretically studied. The results show that formation of the dihydrogen bond leads to elongation and stretch frequency red shift of the BH and XH bonds, except that in the H2CO system, the CH bond blue shifts. For (NH3BH3)2 and the complexes of the halogenides, red shifts of the XH bonds are caused by the intermolecular hyperconjugation σ(BH)→σ^* (XH). For the system of H2CO, a blue shift of the CH bond is caused by a decrease of the intramolecular hyperconjugation n(O→σ^* (CH). In the other two systems, the red shift of OH bond is a secondary effect of the stronger traditional red-shifted H-bonds N-H... O. In all these systems, red shifts of the BH bonds are caused by two factors: negative repolarization and negative rehybridization of the BH bond, and decrease of occupancy on σ(BH) caused by the intermolecular hyperconjugation σ(BH)→σ^* (XH).  相似文献   

18.
The Hartree-Fock-Heitler-London, HF-HL, method is a new ab initio approach which variationally combines the Hartree-Fock, HF, and the Heitler-London, HL, approximations, yielding correct dissociation products. Furthermore, the new method accounts for nondynamical correlation and explicitly considers avoided crossing. With the HF-HL model we compute the ground-state potential energy curves for H2 [1Sigma+g], LiH [X 1Sigma+], BeH [2Sigma+], BH [1Sigma+], CH [2Pi], NH [3Sigma-], OH [2Pi], and FH [1Sigma+], obtaining in average 80% of the experimental binding energy with a correct representation of bond breaking. Inclusion of ionic configurations improves the computed binding energy. The computed dipole moment is in agreement with laboratory data. The dynamical and nondynamical correlation energies for atomic and molecular systems with 2-10 electrons are analyzed. For BeH the avoided crossing of the two lowest [2Sigma+] states is considered in detail. The HF-HL function is proposed as the zero-order reference wave function for molecular systems. To account for the dynamical correlation energy a post-HF-HL technique based on multiconfiguration expansions is presented. We have computed the potential energy curves for H2 [1Sigma+g], HeH [2Sigma+], LiH [X1Sigma+], LiH [A1Sigma+], and BeH [2Sigma+]. The corresponding computed binding energies are 109.26 (109.48), 0.01 (0.01), 57.68 (58.00), 24.19 (24.82), and 49.61 (49.83) kcal/mol, with the experimental values given in parentheses. The corresponding total energies are -1.1741, -3.4035, -8.0695, -7.9446, and -15.2452 hartrees, respectively, the best ab initio variational published calculations, H2 excluded.  相似文献   

19.
1H, (2)H, and (13)C NMR spectra of enriched CH(3)(13)COOH acid without and in the presence of tetra-n-butylammonium acetate have been measured around 110 K using a liquefied Freon mixture CDF(3)/CDF(2)Cl as a solvent, as a function of the deuterium fraction in the mobile proton sites. For comparison, spectra were also taken of the adduct CH(3)(13)COOH.SbCl(5) 1 and of CH(2)Cl(13)COOH under similar conditions, as well as of CH(3)(13)COOH and CH(3)(13)COO(-) dissolved in H(2)O and D(2)O at low and high pH at 298 K. The low temperatures employed allowed us to detect several well-known and novel hydrogen-bonded complexes in the slow hydrogen bond exchange regime and to determine chemical shifts and coupling constants as well as H/D isotope effects on chemical shifts from the fine structure of the corresponding signals. The measurements show that self-association of both carboxylic acids in Freon solution gives rise exclusively to the formation of cyclic dimers 2 and 3 exhibiting a rapid degenerate double proton transfer. For the first time, a two-bond coupling of the type (2)J(CH(3)COOH) between a hydrogen-bonded proton and the carboxylic carbon has been observed, which is slightly smaller than half of the value observed for 1. In addition, the (1)H and (2)H chemical shifts of the HH, HD, and the DD isotopologues of 2 and 3 have been determined as well as the corresponding HH/HD/DD isotope effects on the (13)C chemical shifts. Similar "primary", "vicinal", and "secondary" isotope effects were observed for the novel 2:1 complex "dihydrogen triacetate" 5 between acetic acid and acetate. Another novel species is the 3:1 complex "trihydrogen tetraacetate" 6, which was also characterized by a complex degenerate combined hydrogen bond- and proton-transfer process. For comparison, the results obtained previously for hydrogen diacetate 4 and hydrogen maleate 7 are discussed. Using an improved (1)H chemical shift-hydrogen bond geometry correlation, the chemical shift data are converted into hydrogen bond geometries. They indicate cooperative hydrogen bonds in the cyclic dimers; i.e., widening of a given hydrogen bond by H/D substitution also widens the other coupled hydrogen bond. By contrast, the hydrogen bonds in 5 are anticooperative. The measurements show that ionization shifts the (13)C signal of the carboxyl group to low field when the group is immersed in water, but to high field when it is embedded in a polar aprotic environment. This finding allows us to understand the unusual ionization shift of aspartate groups in the HIV-pepstatin complex observed by Smith, R.; Brereton, I. M.; Chai, R. Y.; Kent, S. B. H. Nature Struct. Biol. 1996, 3, 946. It is demonstrated that the Freon solvents used in this study are better environments for model studies of amino acid interactions than aqueous or protic environments. Finally, a novel correlation of the hydrogen bond geometries with the H/D isotope effects on the (13)C chemical shifts of carboxylic acid groups is proposed, which allows one to estimate the hydrogen bond geometries and protonation states of these groups. It is shown that absence of such an isotope effect is not only compatible with an isolated carboxylate group but also with the presence of a short and strong hydrogen bond.  相似文献   

20.
Laser-ablated Th atoms react with molecular hydrogen to give thorium hydrides and their dihydrogen complexes during condensation in excess neon and hydrogen for characterization by matrix infrared spectroscopy. The ThH2, ThH4, and ThH4(H2)x (x = 1-4) product molecules have been identified through isotopic substitution (HD, D2) and comparison to frequencies calculated by density functional theory and the coupled-cluster, singles, doubles (CCSD) method and those observed previously in solid argon. Theoretical calculations show that the Th-H bond in ThH4 is the most polarized of group 4 and uranium metal tetrahydrides, and as a result, a strong attractive "dihydrogen" interaction was found between the oppositely charged hydride and H2 ligands ThH4(H2)x. This bridge-bonded dihydrogen complex structure is different from that recently computed for tungsten and uranium hydride super dihydrogen complexes but is similar to that recently called the "dihydrogen bond" (Crabtree, R. H. Science 1998, 282, 2000). Natural electron configurations show small charge flow from the Th center to the dihydrogen ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号