首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article presents studies that illustrate beta-alkoxy methyl ketone-derived boron enolates undergo diastereoselective aldol addition to afford the 1,5-anti diol relationship. The stereochemical outcome of this reaction is documented to be general for a variety of beta-alkoxy methyl ketone analogues and aldehyde partners. The double stereodifferentiating reactions of these enolates with chiral beta-alkoxy aldehydes have also been investigated in conjunction with the possibility of controlling the absolute stereochemistry of the aldol process. With the proper selection of reaction conditions, the proximal alkoxy substituent on either the aldehyde (1,3-induction) or the enolate fragment (1,5-induction) can be employed to control facial selectivity of the aldol addition. Selection of a boron enolate ensures dominant 1,5-anti induction from the beta-alkoxy methyl ketone-derived enolate partner while negating any influence of the beta-alkoxy aldehyde substituent. Conversely, if stereochemical control from the beta-alkoxy aldehyde is desired, a Lewis acid-catalyzed enolsilane addition ensures dominant 1,3-induction from the aldehyde beta-oxygen substituent.  相似文献   

2.
[reaction: see text]. General stereocontrolled synthesis of all four (2,3)-stereoisomers of 2-substituted statines is described. The 2,3-syn and 2,3-anti isomers were synthesized via beta-ketoester reduction and aldol reactions, respectively. Peptides containing 2-substituted statines inhibit porcine pepsin with nanomolar IC50 values.  相似文献   

3.
The stereoselectivity of nucleophilic additions to 3-azidoalkanals was investigated. Non-chelating, BF(3)·OEt(2)-mediated Sakurai addition to 3-azidoalkanals afforded 1,3-anti products, whereas use of a chelating Lewis acid, TiCl(4), resulted in 1,3-syn products with moderate selectivity. A boat-like chelation structure of the 3-azidoalkanal with the Lewis acid is proposed to be consistent with the 1,3-syn selectivity of the reactions. Mukaiyama aldol addition to 3-azidohexanal generated 1,3-anti products regardless of the chelating ability of the Lewis acid.  相似文献   

4.
[reaction: see text] Reported herein is a strategy employing a Mukaiyama reaction in tandem with a hydrogen transfer reaction for the elaboration of 2,3-anti-3,4-anti and 2,3-anti-3,4-syn propionate motifs. The mode of complexation is controlled through monodentate or chelate pathways for the Mukaiyama reaction to give access to either syn or anti aldol products, precursors of the free-radical reduction reaction. Boron Lewis acid is used to control the free-radical reaction through the exocyclic pathway.  相似文献   

5.
A novel total synthesis of the complex polyketide (+)-discodermolide, a promising anticancer agent of sponge origin, has been completed in 7.8% overall yield over 24 linear steps, with 35 steps altogether. This second-generation approach was designed to rely solely on substrate control for introduction of the required stereochemistry, eliminating the use of all chiral reagents or auxiliaries. The common 1,2-anti-2,3-syn stereotriad found in each of three subunits, aldehyde 9 (C(1)-C(5)), ester 40 (C(9)-C(16)), and aldehyde 13 (C(17)-C(24)), was established via a boron-mediated aldol reaction of ethyl ketone 15 and formaldehyde, followed by hydroxyl-directed reduction to give 1,3-diol 14. Alternatively, a surrogate aldehyde 22 was employed for formaldehyde in this aldol reaction, leading to the beta-hydroxy aldehyde 20 as a common building block, corresponding to the discodermolide stereotriad. Key fragment unions were achieved by a lithium-mediated anti aldol reaction of ester 40 and aldehyde 13 under Felkin-Anh control to provide (16S,17S)-adduct 51 and a boron-mediated aldol reaction between enone 10 and aldehyde 9, exploiting unprecedented remote 1,6-stereoinduction, to give the (5S)-adduct 57.  相似文献   

6.
The C(1)-C(12) segment of 16-membered antitumor macrolide peloruside A has been prepared by a BF(3).OEt(2)-catalyzed Mukaiyama aldol reaction between a glucose-derived C(1)-C(7) aldehyde and a C(8)-C(12) alpha-benzyloxymethyl ketone. Exclusive 2,3-anti and moderate 3,5-anti/syn facial selectivity (3.5:1) was observed in the aldol reaction. The key C(1)-C(7) aldehyde contains the required stereochemistry at carbons two, three, and five, and has been efficiently prepared on multigram scales from commercial triacetyl D-glucal. [reaction: see text]  相似文献   

7.
The boron-mediated aldol reactions of certain types of beta-alkoxy methyl ketone show remarkably high levels of stereoinduction with achiral aldehydes, leading preferentially to 1,5-anti related stereocenters. Given the low levels of asymmetric induction usually observed in acetate aldol reactions, this is of great synthetic utility and has been used successfully in the total synthesis of a number of polyketide natural products. We have investigated the effects of the alkoxy protecting group (OMe, OPMB, PMP acetal, tetrahydropyran, and OTBS) present in the boron enolate on the level and sense of remote 1,5-stereoinduction, using density functional theory calculations (B3LYP/6-31G**). Our predictions of diastereoselectivity from comparison of the competing aldol transition structures are in excellent qualitative and quantitative agreement with experimentally reported values. We conclude that the boron aldol reactions of unsubstituted boron enolates proceed via boat-shaped transition structures in which a stabilizing formyl hydrogen bond exists between the alkoxy oxygen and the aldehyde proton. It is this interaction that leads to preferential formation of the 1,5-anti adduct, by minimizing steric interactions between the beta-alkyl group and one of the ligands on boron. In the case of silyl ethers, the preference for this internal hydrogen bond is not observed due to the size of the protecting group and the electron-poor oxygen atom that donates electron density into the adjacent silicon atom. We show that this stereochemical model is also applicable in rationalizing the 1,4-syn stereoselectivity of boron aldol reactions involving certain alpha-chiral methyl ketones. These detailed results may be summarized as a conformational diagram that can be used to predict the sense of stereoinduction.  相似文献   

8.
This tutorial review describes that high levels of substrate-controlled, 1,5-stereoinduction are obtained in the boron-mediated aldol reactions of beta-oxygenated methyl ketones with achiral and chiral aldehydes. Remote induction from the boron enolates gives the 1,5-anti adducts, with the enolate pi-facial selectivity critically dependent upon the nature of the beta-alkoxy protecting group. This 1,5-anti aldol methodology has been strategically employed in the total synthesis of several natural products with remarkable pharmacological activities. At present, the origin of the high level of 1,5-anti induction obtained with the boron enolates is unclear, although a model based on hydrogen bonding between the beta-alkoxy oxygen and the formyl aldehyde hydrogen has recently been proposed.  相似文献   

9.
A synthesis of the C(29)-C(45) bis-pyran subunit 2 of spongistatin 1 (1a) is described. The synthesis proceeds in 19 steps from the chiral aldehyde ent-7, and features highly diastereoselective alpha-alkoxyallylation reactions using the gamma-alkoxy substituted allylstannanes 17 and 19, as well as a thermodynamically controlled intramolecular Michael addition to close the F-ring pyran. The E ring was assembled via the Mukaiyama aldol reaction of F-ring methyl ketone 3 and the 2,3-syn aldehyde 4.  相似文献   

10.
[reaction: see text] The enantioselective synthesis of the (+)-leucascandrolide A macrolactone has been achieved in 20 linear steps from 1,3-propanediol. The key steps in the synthesis are a reductive cleavage of bicyclic ketal 5 to establish the C15 stereogenic center and a diastereoselective aldol of the boron enolate of methyl ketone 3 to aldehyde 4 in preparation for a heteroconjugate addition for the introduction of the C3 stereocenter.  相似文献   

11.
A very efficient method for performing stereoselective aldol reactions is reported. The reaction of (S, S)-(+)-pseudoephedrine-derived propionamide enolates with several aldehydes yielded exclusively one of the four possible diastereomers in good yields, although transmetalation of the firstly generated lithium enolate with a zirconium(II) salt, prior to the addition of the aldehyde, is necessary in order to achieve high syn selectivity. The so-formed syn-alpha-methyl-beta-hydroxy amides were transformed into other valuable chiral nonracemic synthons such as alpha-methyl-beta-hydroxyacids, esters, and ketones. Finally, a stereocontrolled reduction procedure starting from the so-obtained alpha-methyl-beta-hydroxy ketones has been developed allowing the synthesis of either 1,3-syn- or 1,3-anti-alpha-methyl-1,3-diols in almost enantiopure form by choosing the appropriate reaction conditions.  相似文献   

12.
A direct catalytic asymmetric aldol reaction of thioamides using a soft Lewis acid/hard Br?nsted base cooperative catalyst comprising (R,R)-Ph-BPE/[Cu(CH(3)CN)(4)]PF(6)/LiOAr is described. Exclusive enolate generation from thioacetamides through a soft-soft interaction with the soft Lewis acid allowed for a direct aldol reaction to α-nonbranched aliphatic aldehydes, which are usually susceptible to self-condensation under conventional basic conditions. A hard Lewis basic phosphine oxide has emerged as an effective additive to constitute a highly active ternary soft Lewis acid/hard Br?nsted base/hard Lewis base cooperative catalyst, enabling a direct enantio- and diastereoselective aldol reaction of thiopropionamides. Strict control of the amount of the hard Lewis base was essential to drive the catalytic cycle efficiently with a minimized retro-aldol pathway, affording syn-aldol products with high stereoselectivity. Divergent transformation of the thioamide functionality is an obvious merit of the present aldol methodology, allowing for a facile transformation of the aldol product into the corresponding aldehyde, ketone, amide, amine, and ketoester. An aldehyde derived from the direct aldol reaction was subjected to a second direct aldol reaction, which proceeded in a catalyst-controlled manner to provide 1,3-diols with high stereoselectivity.  相似文献   

13.
The ambido-, stereo- and enantioselectivity of the phosphoramide-promoted aldol reactions of α-oxy aldehyde trichlorosilyl enolates with benzaldehyde has been investigated. Analysis of the products from α-tert-butyldimethylsilyloxy α-deuterioacetaldehyde trichlorosilyl enolate confirmed that this 1,2-bis-silyloxyethene derivative reacted as a tert-butyldimethylsilyl enolate rather than trichlorosilyl enolate in the aldol reaction with very high ambidoselectivity. The phosphoramide-coordinated trichlorosilyl group acted as an organizing center for the aldol reaction. From the aldol process, excellent anti-diastereoselectivity could be achieved. The enantioselectivity remained moderate to low for both anti- and syn-diastereomer with a wide range of phosphoramide catalysts. α-Triisopropylsilyloxy, phenoxy and benzyloxy acetaldehyde trichlorosilyl enolates also reacted in a similar fashion with benzaldehyde to give aldol products with varying degrees of selectivities.  相似文献   

14.
Highly stereoselective syntheses of aldols 8a-c corresponding to the C(13)-C(25) segment of bafilomycin A(1) were developed by routes involving fragment assembly aldol reactions of chiral aldehyde 6a and the chiral methyl ketones 7. A remote chelation effect plays a critical role in determining the stereoselectivity of the key aldol coupling of 6a and the lithium enolate of 7b. The protecting group for C(23)-OH of the chiral aldehyde fragment also influences the selectivity of the lithium enolate aldol reaction. In contrast, the aldol reaction of 6a and the chlorotitanium enolates of 7a,c were much less sensitive to the nature of the C(15)-hydroxyl protecting group. Studies of the reactions of chiral aldehydes with Takai's (gamma-methoxyallyl)chromium reagent 40 are also described. The stereoselectivity of these reactions is also highly dependent on the protecting groups and stereochemistry of the chiral aldehyde substrates.  相似文献   

15.
A new method for the stereoselective synthesis of the anti,anti-dipropionate stereotriad via the reaction of alpha-methyl-beta-hydroxy aldehydes with (Z)-crotyltrifluorosilane (24) is described. These reactions were designed to occur through bicyclic transition states (e.g., 31) in which the silane reagent is covalently bound to the beta-hydroxyl group of the aldehyde and the crotyl group is transferred intramolecularly. This methodology was used to synthesize the C(7)-C(16) segment (58) of zincophorin, which contains a synthetically challenging all-anti stereopentad unit. Surprisingly, 2,3-anti- and 2,3-syn-alpha-methyl-beta-hydroxy aldehydes react in a stereodivergent manner with 24: 2,3-anti-beta-hydroxy aldehydes give the targeted anti,anti-dipropionate adducts with high selectivity, but the reactions of 2,3-syn-beta-hydroxy aldehydes are poorly selective. The stereodivergent behavior of 2,3-syn- vs 2,3-anti-alpha-methyl-beta-hydroxy aldehydes is also exhibited in their reactions with the allyl- (68) and (E)-crotyltrifluorosilanes (27). Competition experiments performed with beta-hydroxy aldehydes 37a (anti) and the corresponding p-methoxybenzyl (PMB) ether 48, and between aldehyde 39 (syn) and the PMB ether 90, established that the 2,3-anti-beta-hydroxy aldehydes react predominantly through bicyclic transition states while the 2,3-syn aldehydes react predominantly through conventional Zimmerman-Traxler transition states. NMR studies established that both the 2,3-syn and the 2,3-anti aldehydes form stable, pentavalent silicate intermediates (98 and 100) with PhSiF(3), but chelated structures 99 and 101 could not be detected. The activation energies for the competing bicyclic and conventional Zimmerman-Traxler transition states were calculated by using semiemperical methods (MNDO/d). These calculations indicate that the stereodivergent behavior of the 2,3-syn-beta-hydroxy aldehydes and the 2,3-anti-beta-hydroxy aldehydes is due to differences in nonbonded interactions in the bicyclic transition states. Specifically, nonbonded interactions in the bicyclic transition states for the allylation/crotylation reactions of the 2,3-syn-beta-hydroxy aldehydes permits the traditional Zimmerman-Traxler transition states to be preferentially utilized.  相似文献   

16.
Since 1'-branched nucleosides are biologically important targets in medicinal chemistry, more efficient methods for preparing them are required. The 1'alpha-branched uridine derivatives were successfully synthesized via a samarium diiodide (SmI(2))-promoted aldol reaction. Treatment of the 1'alpha-phenylseleno-2'-ketouridine derivative 6, readily prepared from uridine, with SmI(2) at -78 degrees C in THF reductively cleaved the anomeric Se-C bond to generate the corresponding samarium enolate, which was highly stereoselectively condensed with aldehydes, such as PhCHO, MeCHO, i-PrCHO, or (CH(2)O)(n)(), to give the corresponding 1'alpha-1' 'S-branched products 12a-d. This is the first time an enolate has been generated by reductively cleaving a C-Se bond. The highly selective stereochemical results suggest that the aldol reaction proceeds via a chelation-controlled transition state. When an excess of aldehyde was used and the reaction mixture was gradually warmed, the tandem aldol-Tishchenko reaction proceeded to give the "arabino-type" nucleosides 14a-c, having a 2'-"up" hydroxyl and 1'alpha-1' 'S-branched chain. 1'alpha-Hydroxymethyluridine (21), which is the uracil version of the antitumor antibiotic angustmycin C, was synthesized from the aldol reaction product 10.  相似文献   

17.
Chiral Al/Zn heterobimetallic complexes are effective catalysts for the direct highly enantioselective aldol reaction of acetophenones with aromatic aldehydes. The Al site in the complex acts as a Lewis acid to activate aldehyde, whereas ethylzinc alkoxide plays a role of a Brønsted base to form a reactive zinc enolate with acetophenone. Distinct nature of two different metals contributes to the efficient direct asymmetric aldol reaction.  相似文献   

18.
[reaction: see text] The aldol reaction of acetamide enolates with protected chiral alpha-amino-beta-hydroxy aldehyde 1 (Garner's aldehyde) has been performed in a stereocontrolled way under double stereodifferentiation conditions using pseudoephedrine as the additional chiral information source attached to the enolate reagent. In addition, the obtained adduct has been transformed into other valuable chiral building blocks such as gamma-amino-beta,delta-dihydroxy acids, esters, and ketones.  相似文献   

19.
Addition of an aldehyde and zinc chloride to a cyclobutanone enolate, prepared by the reaction of an α-chlorocyclobutanone with dimethylcopperlithium, gave an aldol adduct in good yield.  相似文献   

20.
Aldol reaction of trimethylsilyl enolate with aldehyde proceeded in the presence of a catalytic amount of a Lewis base, N-methylimidazole, and lithium chloride in DMF at room temperature. Not only aryl aldehyde but also alkyl aldehyde provided the aldol product in satisfactory yields. The reaction was mild enough to apply to the aldehyde having HO, AcO, THPO, TBDMSO, MeS, pyridyl or olefinic group. Microwave irradiation accelerated the reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号