首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Vapor phase OH-stretching overtone spectra of ethylene glycol were recorded to investigate weak intramolecular hydrogen bonding. The spectra were recorded with conventional absorption spectroscopy and laser photoacoustic spectroscopy in the first to fourth OH-stretching overtone regions. The room-temperature spectra are dominated by two conformers that show weak intramolecular hydrogen bonding. A less abundant third conformer, with no sign of hydrogen bonding, is also observed. Vapor phase spectra of the ethylene-d(4) glycol isotopomer were also recorded and used to identify an interfering resonance between CH-stretching and OH-stretching states in the fourth overtone. Anharmonic oscillator local mode calculations of the OH-stretching transitions have provided an accurate simulation of the observed spectra. The local mode parameters were calculated with coupled cluster ab initio methods. The calculations facilitate assignment of the different conformers in the spectra and illustrate the effect of the intramolecular hydrogen bonding.  相似文献   

2.
The relative energies of conformers of 1,2-ethanediol, 1,3-propanediol, and 1,4-butanediol are split into a sum of five different terms including the intramolecular OH?O interaction. This scheme allows to estimate the energy of the O-H?O intramolecular hydrogen bond of the tGG′g and gGG′g conformers of 1,3-propanediol, the g′GG′Gt and g′GG′Gg conformers of 1,4-butanediol, and the energy of the non-bonded O-H?O interaction in the g′Gt, g′Gg and g′Gg′ conformers of 1,2-ethanediol. This scheme provides pure hydrogen bond energies without assuming the geometry and/or electronic features to be constant between the conformation having a IHB and a reference conformation. The fitted energies show a perfect linear correlation with the corresponding r(H?O)−1 values. QTAIM atomic electron population and energies of the donor hydrogen calculated along the H-O-C-C internal rotation are found to be linearly correlated. These linear correlations display small changes at the BCP formation in 1,3-propanediol.  相似文献   

3.
In this theoretical study, we simulated the vibrational overtone spectrum of ethylene glycol (EG), 1-3 propanediol (PD), and 1-4 butanediol (BD). Using the local mode model along with the potential energy curve and dipole moment function calculated by B3LYP/6-31+G(d,p) and QCISD/6-311++G(3df,3pd), we obtained the theoretical peak position and integrated absorption coefficient. Furthermore, the vibrational spectra was simulated using a Voigt function using homogeneous and inhomogenous width obtained from quantum chemical calculation methods. Previously, Howard and Kjaergaard recorded the second and third overtone photoacoustic spectra of the three aforementioned alkane diols in the gas phase and observed that the intramolecular hydrogen bonded OH peak becomes difficult to observe as the intramolecular hydrogen bonding strength increased, that is, as the chain length was increased. In this paper we show that the disappearance of the hydrogen-bonded OH peak for the OH stretching overtone excitation for BD is partly due to the increase in homogeneous width due to the increase in the hydrogen bond strength and partly due to the decrease in the relative population of the intramolecular hydrogen-bonded conformers as the chain length is increased. This latter feature is a consequence of the unfavorable strained geometry needed to form the intramolecular hydrogen bond in longer alkane chains.  相似文献   

4.
We studied the influence of hydrogen bonding on the fundamental and overtone bands of the OH-stretching vibration of each OH group in the intramolecularly hydrogen-bonded OH(I)::OH(II) pair in 1,2-, 1,3- and 1,4-diols. The hydrogen bonding between the two OH groups significantly increases in strength from the five-membered ring of a 1,2-diol to the seven-membered ring of a 1,4-diol. Although the hydrogen bonding does not affect the vibrational property of the OH(II) (or acceptor), it significantly influences the OH(I) (or donor). As the hydrogen bonding becomes stronger from a 1,2- to a 1,4-diol, the fundamental band of the OH-stretching shifts downwards by from about 50 to 140 cm(-1), and the overtone band markedly decreases in intensity, although the effect on the intensity and bandwidth of the fundamental band varies among 1,2-, 1,3- and 1,4-diols. The quantum-mechanically calculated normal frequencies of the acceptor and donor OH groups in the hydrogen-bonded ring are in good agreement with the observed frequencies. The calculated interatomic distance between the O of an acceptor OH and the H of a donor OH is the shortest for a 1,4-diol, which is consistent with the largest frequency shift caused by the hydrogen bonding.  相似文献   

5.
A systematic study of poly(methylene terephthalates) has been made. Melting points, second-order transition temperatures, and solubility temperatures are presented for the homologous series of terephthalate polyesters of ethylene glycol through 1,10-dodecanediol, and for terephthalate copolyesters of: (1) ethylene glycol/1,3-propanediol and (2) ethylene glycol/1,4-butanediol. Fiber properties of the terephthalate polyesters and the 70/30 ethylene glycol/1,3-propanediol copolyterephthalate ester are presented. Only the first three members of the poly(methylene terephthalate) series show promise for use in textile fibers.  相似文献   

6.
Vapor-phase OH-stretching overtone spectra of methanesulfonic acid and trifluoromethanesulfonic acid were recorded in the Deltav(OH) = 4 and 5 regions using cavity ring-down spectroscopy. We compare these spectra to those of sulfuric acid to consider the effect on vibrational overtone spectra of replacing one of the OH groups with a more or less electronegative group. We complement our experimental work with anharmonic oscillator local mode calculations of the OH-stretching frequencies and intensities. The presence of a weak intramolecular interaction between the hydrogen atom of the OH group and the oxygen atom of the adjacent S=O group in methanesulfonic acid lowers its OH-stretching frequency from what would otherwise be predicted based on the electronegativity of the methyl group.  相似文献   

7.
Theoretical calculations at the MP2 level, NBO and AIM analysis, and matrix-isolation infrared spectroscopy have been used to investigate the structure of the isolated molecule of 1,4-butanediol (1,4-BDO). Sixty-five structures were found to be minima on the potential energy surface, and the three most stable forms are characterized by a folded backbone conformation leading to the formation of an intramolecular H-bond. To better characterize the intramolecular interactions and particularly the hydrogen bonds, natural bond orbital analysis (NBO) was performed for the four most stable conformers, and was further complemented with an atoms-in-molecules (AIM) topological analysis. Infrared spectra of 1,4-BDO isolated in low-temperature argon and xenon matrixes show a good agreement with a population-weighted mean theoretical spectrum, and the spectral features of the conformers expected to be trapped in the matrixes were observed experimentally. Annealing the xenon matrix from 20 to 60 K resulted in significant spectral changes, which were interpreted based on the barriers to intramolecular rotation. An estimation of the intramolecular hydrogen bond energy was carried out following three different methodologies.  相似文献   

8.
The near infrared vibrational overtone absorption spectrum of liquid phase o-fluorophenol is examined in the region deltav=2, 3 and 4. The OH frequencies are compared with that of o-chlorophenol and phenol. Considering the relative electronegativities of all halogens, one might expect the order of intramolecular hydrogen bond strength for o-fluorophenol to be the greatest among all halogenophenols. It is evident that o-fluorophenol forms a weaker intramolecular hydrogen bond (an anomalous trend) contrary to that expected from relative electronegativities of halogens. The local mode mechanical frequency values and anharmonicity values obtained from fitting the overtones are analysed. Our observation is in agreement with the previous experimental as well as the recent theoretical vibrational analysis of halogenophenols using density functional theory (B3LYP). The overtone spectra of o-fluorophenol in carbon tetrachloride in different concentrations are also examined. It is noted that the OH-red shift which arises due to the intermolecular bond formation between the cis and trans conformers of o-fluorophenol (dimerization) increases with concentration.  相似文献   

9.
Vibrational spectra of vapor-phase 1,2-ethanedithiol and 2-mercaptoethanol were recorded to investigate weak intramolecular interactions. The spectra were recorded with conventional absorption spectroscopy and laser photoacoustic spectroscopy in the 2000-11,000 cm(-1) region. The room temperature spectra of each molecule are complicated by contributions from several conformers. Anharmonic oscillator local-mode calculations of the OH- and SH-stretching transitions have been performed to facilitate assignment of the different conformers in the spectra. We observe evidence of hydrogen-bond-like interactions from OH to S, but not from SH to O or S. The OH to S intramolecular interaction in 2-mercaptoethanol is weak and comparable to that found in the OH to O interaction in ethylene glycol.  相似文献   

10.
A comparison was performed of the selected glycols, i.e., 1,2-ethanediol, 1,3-propanediol, 1,4-butanediol, and 1,5-pentanediol, in respect of their ability to form intramolecular hydrogen bonds. The following analytical techniques were employed: ir absorption spectroscopy and a new method taking advantage of chromatographic paper.  相似文献   

11.
Reverse nonequilibrium molecular dynamics in the canonical ensemble and coupled–decoupled configurational-bias Monte Carlo simulations in the Gibbs ensemble were used to predict the low-shear rate Newtonian viscosities and vapor–liquid coexistence curves for 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2-methyl-1,3-propanediol, and 1,2,4-butanetriol modeled with the transferable potentials for phase equilibria-united atom (TraPPE-UA) force field. Comparison with available experimental data demonstrates that the TraPPE-UA force field yields very good predictions of the viscosities and vapor–liquid coexistence curves. A detailed analysis of liquid structure and hydrogen bonding is provided.  相似文献   

12.
It is well-known that intramolecular hydrogen bonding affects the relative energetics of conformers, as well as the OH stretching peak positions, intensities, and width. In this study we simulated the Δv(OH) = 3, 4 overtone spectra of 1,5-pentanediol (PeD) and 1,6-hexanediol (HD) using the peak positions, intensities, and width calculated from the B3LYP/6-31+G(d,p) method. Furthermore, room temperature free energy calculations were performed using B3LYP/6-31+G(d,p) MP2/6-31+G(d,p), and MP2/6-311++G(3df,3pd) to obtain the relative population of the conformers. From the calculation of 109 and 381 distinct conformers for PeD and HD, respectively, we find that for these long chain diols the intramolecular hydrogen bonded conformers are not the most dominant conformation at room temperature. This is in stark contrast with shorter chain diols such as ethylene glycol for which the hydrogen bonded conformer dominates the population at room temperature. On the other hand, we found that the correlation between the hydrogen bonded OH red shift versus the homogeneous width, Γ = 0.0155(Δω)(1.36), which was derived for shorter chain diols, is valid even for these longer chain diols. We also showed that the intramolecular hydrogen bonded OH initially decays through the CCOH torsion and COH bending mode no matter how long the alkanediol chain length is for 1,n-alkanediols for n up to 6.  相似文献   

13.
We have measured the OH-stretching fundamental and overtone spectra of resorcinol and hydroquinone in a supersonic jet using nonresonant ionization detected infrared/near-infrared spectroscopy. Anharmonic oscillator local mode calculations of the OH-stretching frequencies and intensities and Boltzmann populations of the stable rotamers have been calculated at the B3LYP/6-311++G(3df,2pd) level to help interpret the observed spectra. Resorcinol has three stable rotamers and in the recorded second and third OH-stretching overtone spectra there is evidence of two distinguishable rotamers. Hydroquinone has two stable rotamers; however, the OH-stretching oscillators of each rotamer are so similar in nature that even up to the fourth OH-stretching overtone the transitions coincide. These results place a limit on the ability of the jet-cooled overtone spectroscopy technique to distinguish between rotamers.  相似文献   

14.
A comparison of steric and anchimeric effects on the hydrolytic stability of polyesters was studied. Twelve monomers were selected based on their propensity toward steric and anchimeric interactions: adipic acid, isophthalic acid, phthalic anhydride, hexahydrophthalic anhydride, 1,4-cyclohexanedicarboxylic acid, maleic anhydride, ethylene glycol, 1,2-propanediol, 1,3-propanediol 1,4-butanediol, 1,5-pentanediol, and neopentyl glycol. Hydroxyl terminated oligoesters consisting of one diacid and one diol and one hydroxyl terminated oligoester consisting of two diacids and one diol were prepared. The hydrolytic stability was evaluated in an acetone/water solution. The acid number was monitored as a function of time. It was found that telechelic groups favor anchimeric interactions, while steric groups determine the rate of hydrolysis for the main chain.  相似文献   

15.
Eight homopolycyanurates have been synthesized by interfacial polycondensation of 2-carbazol-4,6-dichloro-s-triazine with 1,7-dihydroxynaphthalene, 1,4-dihydroxyanthraquinone, ethylene glycol, diethylene glycol, triethylene glycol, 1,2-propanediol, 1,4-butanediol and 1,8-dihydroxyanthraquinone. All the homopolycyanurates synthesized were characterized for their solubility, density, viscosity, IR, NMR spectral and thermogravimetric parameters.  相似文献   

16.
We have calculated the band profiles of the OH-stretching fundamental and overtone transitions in the proton donor unit of the water dimer complex. We have used a local mode Hamiltonian that includes both OH-stretching and OO-stretching motion but separates these adiabatically. The variation of OH-stretching frequency and anharmonicity with OO displacement from equilibrium contributes to the effective OO-stretching potentials for each OH-stretching state. The resulting OO-stretching energy levels and wave functions are used to simulate the vibrational profile of each OH-stretching transition. The coupled cluster with singles, doubles, and perturbative triples ab initio method with an augmented triple-zeta correlation consistent basis set has been used to obtain the necessary parameters, potentials, and dipole moment functions. We find that the OO-stretching transitions associated with a given hydrogen bonded OH-stretching transition are spread significantly and this spread increases with overtone. The spread is minor for the free OH-stretching transition. The inclusion of the OO-stretching mode has a limited effect on the overall OH-stretching band intensity.  相似文献   

17.
张健爽  高美珍  王梦瑶  石琪  董晋湘 《应用化学》2022,39(11):1735-1745
1,3-丙二醇是一种重要的化工原料,生物发酵法生产1,3-丙二醇往往会产生副产物2,3-丁二醇,限制了生物基1,3-丙二醇的进一步工业化应用。1,3-丙二醇与2,3-丁二醇亲水性强,导致其在低浓度发酵液中分离困难。基于2,3-丁二醇比1,3-丙二醇具有长的碳链和大的极化率,本文采用含有―Cl基团(憎水且具有大的极化率)的ZIF-71吸附分离水中低浓度的2,3-丁二醇/1,3-丙二醇。结果表明,ZIF-71对双组分2,3-丁二醇/1,3-丙二醇(50 g/L,50 g/L)中2,3-丁二醇的静态竞争吸附容量为123.6 mg/g,对2,3-丁二醇/1,3-丙二醇分离选择性高达7.6,分离效果优于沸石材料Beta。在3次循环吸附-解吸实验中ZIF-71依旧保持着稳定的结构和对2,3-丁二醇的选择性吸附能力。通过分子模拟,揭示了ZIF-71对1,3-丙二醇和2,3-丁二醇的吸附分离机制。ZIF-71与1,3-丙二醇之间主要通过弱的范德华力作用;而ZIF-71与2,3-丁二醇之间则是通过强的范德华力与弱的氢键协同作用,从而对2,3-丁二醇产生选择性吸附。可以看出, ZIFs材料有望成为选择性吸附分离低浓度副产物2,3-丁二醇的吸附剂,推动生物法制1,3-丙二醇的工业化发展。  相似文献   

18.
The effects on polymer yield and viscosity in the interfacial condensation of hydroquinone with phenylphosphonic dichloride as a function of the pH of the aqueous medium are reported. Reactions competing with polymer formation are discussed. The beneficial advantages in the use of soluble buffers or bases of limited water solubility to control pH are contrasted with results of conventionally used sodium hydroxide. The results of investigations of other comer pairs for which reaction conditions have not been optimized are also reported; desoxyribose and the diols: thymidine, resorcinol, 2,5-dichlorohydroquinone, 1,3-dihydroxyacetone, 1,4-butanediol, tartaric acid, ethylene glycol, and 2,2-dimethyl-1,3-propanediol are tabulated.  相似文献   

19.
The gas phase spectra of several vibrational bands of peroxyformic acid (PFA), an atmospheric molecule exhibiting intramolecular hydrogen bonding, are presented. In the fundamental region, Fourier transform infrared (FT-IR) spectroscopy is used to probe the C-O, O-H and C-H stretching vibrations, while in the region of the first and second OH-stretching overtones (2ν(OH) and 3ν(OH)) photoacoustic spectroscopy is used. Integrated absorption cross sections for the PFA vibrational bands are determined by comparing their respective peak areas with that for the OH-stretching bands of n-propanol for which the absorption cross section is known. The measured integrated intensities of the OH stretching bands are then compared with a local mode model using a one-dimensional dipole moment function in conjunction with the OH stretching potential computed at both the MP2/aug-cc-pVDZ and CCSD(T)/aug-cc-pVDZ levels. The data allow us to investigate changes in the OH stretch band position and intensity as a function of overtone order arising from the influence of hydrogen bonding. Furthermore, calculations at the MP2/aug-cc-pVDZ level show that there are three stable conformers of PFA with relative energies of 0, 13.54, and 13.76 kJ/mol, respectively. In the room temperature spectra, however, we see evidence for transitions from only the lowest energy conformer. The geometrical parameters and vibrational frequencies of the most stable conformer are presented.  相似文献   

20.
Three low-lying conformers of the hydrogen maleate anions (HMAs) regarding cis-HMA(HB) having the O-...HO intramolecular hydrogen bond (HB), cis-HMA(nHB) without the HB, and trans-HMA are studied by density functional theory (B3LYP) combined with natural bond orbital (NBO) and atoms-in-molecules (AIM) analyses. The photoelectron spectra of cis- and trans-HMA conformers recorded by Woo et al. (J. Phys. Chem. A 2005, 109, 10633) are reassigned on the basis of the present electron propagator theory calculations, indicating the significant energy differences between the Dyson orbitals and canonical molecular orbitals due to the electron-correlation and orbital relaxation effects considered in the electron propagator theory. The NBO associated with the natural resonance theory analyses and AIM electron topological study show that the strong O-...HO in cis-HMA(HB) has the remarkable characteristics of three-center four-electron hyperbond, and the bonding strength of ca. 30 kcal/mol is recommended with the reference calculations of the HO-...HOH complex. The further calculations for the microhydrated cis-HMA(HB) clusters indicate that the O-...HO bonding strength decreases in water solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号