首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The β-ketoacyl-acyl carrier protein synthase, or ketosynthase (KS), catalyses carbon–carbon bond formation in fatty acid and polyketide biosynthesis via a decarboxylative Claisen-like condensation. In prokaryotes, standalone elongating KSs interact with the acyl carrier protein (ACP) which shuttles substrates to each partner enzyme in the elongation cycle for catalysis. Despite ongoing research for more than 50 years since KS was first identified in E. coli, the complex mechanism of KSs continues to be unravelled, including recent understanding of gating motifs, KS–ACP interactions, substrate recognition and delivery, and roles in unsaturated fatty acid biosynthesis. In this review, we summarize the latest studies, primarily conducted through structural biology and molecular probe design, that shed light on the emerging enzymology of standalone elongating KSs.

Ketosynthases (KSs) accept substrates from the acyl carrier protein (ACP) to catalyse carbon–carbon bond formation in fatty acid and polyketide biosynthesis. In this review, we delineate the enzymology of standalone elongating ketosynthases with a focus on the enzyme gates.  相似文献   

2.
[structure: see text] The total synthesis of the epidermal growth factor inhibitor reveromycin B (2) is described. A novel, convergent, and stereoselective reaction sequence was utilized to construct the 5,6-spiroketal system 10 which was converted into the natural product 2 by a 16-step sequence.  相似文献   

3.
Reactions of 3-[(2-bromoprop-2-en-1-yl)sulfanyl]-5H-[1,2,4]triazino[5,6-b]indole with bromine and of 3-[(2-methylprop-2-en-1-yl)sulfanyl]-5H-[1,2,4]triazino[5,6-b]indole with iodine and bromine afforded 3-halomethyl-10H-[1,3]thiazolo[3′,2′: 2,3][1,2,4]triazino[5,6-b]indol-4-ium halides whose structures were determined by 1H NMR and X-ray analysis.  相似文献   

4.
Synthesis of new fused systems of triazino[5,6-b]indole starting with preparation of 3-amino[1,2,4]-triazino[5,6-b]indole 1 by reaction of isatin with 2-aminoguanidinium carbonate in boiling acetic acid is presented [1]. Intermediate compound 1 reacted with aldehyde, ethyl chloroformate, triethyl orthoformate, and ninhydrine and gave new heterotetracyclic nitrogen systems, such as 3-(N 2-guanidinylimino)indole-2(1H)-one 2, 3-(N-ethoxycarbonylamino)-4H-[1,2,4]triazino[5,6-b]indole 3, 3-(N-ethoxymethyleneamino)-4H-[1,2,4]-triazino[5,6-b]indole 4, 3-(hydrazinothiocarbonylamino)-4H-[1,2,4]triazino[5,6-b]indole 5, respectively. N-(1,3-dioxoindene-2-ylidene)-4H-[1,2,4]triazino[5,6-b]indol-3-amine 6 was synthesized by reaction of compound 1 with aldehyde, ethyl chloroformate, triethyl orthoformate, and ninhydrine. New fused indole systems, pyrimido[2′,1′:3,4][1,2,4]triazino[5,6-b]indol-3(4H)-one 8, 9, 11, 12 and 1H-imidazo[2′,1′:3,4][1,2,4]triazino-[5,6-b]indol-2(3H)-one 10, were synthesized in the reaction of the intermediate 1 with bifunctional compounds. Structures of the products were elucidated from their elemental analysis and spectral data (IR, 1H and 13C NMR and mass spectra). Antimicrobial activity of some synthesized compounds was tested.  相似文献   

5.
The bicyclo[2.2.2]diazaoctane alkaloids are a vast group of natural products which have been the focus of attention from the scientific community for several decades. This interest stems from their broad range of biological activities, their diverse biosynthetic origins, and their topologically complex structures, which combined make them enticing targets for chemical synthesis. In this article, full details of our synthetic studies into the chemical feasibility of a proposed network of biosynthetic pathways towards the brevianamide family of bicyclo[2.2.2]diazaoctane alkaloids are disclosed. Insights into issues of reactivity and selectivity in the biosynthesis of these structures have aided the development of a unified biomimetic synthetic strategy, which has resulted in the total synthesis of all known bicyclo[2.2.2]diazaoctane brevianamides and the anticipation of an as-yet-undiscovered congener.

A divergent biomimetic total synthesis of all known bicyclo[2.2.2]diazaoctane brevianamide alkaloids has been achieved. These synthetic studies have also resulted in the anticipation of an as-yet-undiscovered congener, which we name brevianamide Z.  相似文献   

6.
Condensing a dihydrazide and each of a series of cationic bisaldehyde compounds bearing polymethylene chains in weakly acidic water produces either a macrocycle in a [1 + 1] manner or its dimer namely a [2]catenane, or their mixture. The product distribution is determined by the length of the bisaldehydes. Addition of cucurbit[8]uril (CB[8]) drives the catenane/macrocycle equilibria to the side of macrocycles, by forming ring-in-ring complexes with the latter. When the polymethylene unit of the bisaldehyde is replaced with a more rigid p-xylene linker, its self-assembly with the dihydrazide leads to quantitative formation of a [2]catenane. Upon addition of CB[8], the [2]catenane is transformed into an ultra-large macrocycle condensed in a [2 + 2] manner, which is encircled by two CB[8] rings. The framework of this macrocycle contains one hundred and two atoms, whose synthesis would be a formidable task without the external template CB[8]. Removal of CB[8] with a competitive guest leads to recovery of the [2]catenane.

Condensing a bisaldehyde and a bisacylhydrazide in water in the presence of cucurbit[8]uril, produced an ultra-large ring whose framework contains more than one hundred atoms.  相似文献   

7.
The biosynthesis of polyketides by type I modular polyketide synthases (PKS) relies on co-ordinated interactions between acyl carrier protein (ACP) domains and catalytic domains within the megasynthase. Despite the importance of these interactions, and their implications for biosynthetic engineering efforts, they remain poorly understood. Here, we report the molecular details of the interaction interface between an ACP domain and a ketoreductase (KR) domain from a trans-acyltransferase (trans-AT) PKS. Using a high-throughput mass spectrometry (MS)-based assay in combination with scanning alanine mutagenesis, residues contributing to the KR-binding epitope of the ACP domain were identified. Application of carbene footprinting revealed the ACP-binding site on the KR domain surface, and molecular docking simulations driven by experimental data allowed production of an accurate model of the complex. Interactions between ACP and KR domains from trans-AT PKSs were found to be specific for their cognate partner, indicating highly optimised interaction interfaces driven by evolutionary processes. Using detailed knowledge of the ACP:KR interaction epitope, an ACP domain was engineered to interact with a non-cognate KR domain partner. The results provide novel, high resolution insights into the ACP:KR interface and offer valuable rules for future engineering efforts of biosynthetic assembly lines.

The interaction epitope between a cognate KR–ACP domain pairing from a trans-AT polyketide synthase is elucidated in molecular detail, providing unique insights into recognition and specificity of the interface.  相似文献   

8.
Platinum terpyridyl complexes, stacked on top of one another and secured as dimers with cucurbit[8]uril (CB[8]) in aqueous medium, were functionalized quantitatively and in situ with a pair of pentapeptides Phe-(Gly)3-Cys by grafting their cysteine residues to the Pt centers. The resulting CB[8]·(Pt·peptide)2 assemblies were used to target secondary hosts CB[7] and CB[8] via their pair of phenylalanine residues, again in situ. A series of well-defined architectures, including a supramolecular “pendant necklace” with hybrid head-to-head and head-to-tail arrangements inside CB[8], were obtained during the self-sorting process after combining only 3 or 4 simple building units.

A platinum terpyridyl complex, pentapeptide Phe-(Gly)3-Cys and cucurbit[8]uril assemble into a “pendant necklace” with hybrid head-to-head and head-to-tail arrangements in aqueous medium.  相似文献   

9.
Herein, we report a mild and highly regioselective Rh(iii)-catalyzed non-oxidative [5 + 1] vinylic C–H annulation of 2-alkenylanilides with allenyl acetates, which has been elusive so far. The reaction proceeds via vinylic C–H activation, regioselective 2,3-migratory insertion, β-oxy elimination followed by nucleophilic cyclization to get direct access to 1,2-dihydroquinoline derivatives. The strategy was also successfully extended to C–H activation of 2-alkenylphenols for constructing chromene derivatives. In the overall [5 + 1] annulation, the allene serves as a one carbon unit. The acetate group on the allene is found to be crucial both for controlling the regio- and chemoselectivity of the reaction and also for facilitating β-oxy elimination. The methodology was scalable and also further extended towards late stage functionalization of various natural products.

A highly regioselective Rh(iii)-catalyzed non-oxidative [5 + 1] vinylic C–H annulation of 2-alkenylanilides and 2-alkenylphenols with allenyl acetates was described for accessing dihyroquinoline and chromene derivatives.  相似文献   

10.
The condensation of 1-amino-3,3-dimethyl-3,4-dihydronaphthalene-2-carbonitrile with chloroacetyl chloride afforded chloro-N-(2-cyano-3,3-dimethyl-3,4-dihydronaphthalen-1-yl)acetamide which underwent cyclization to 2-(chloromethyl)-5,5-dimethyl-5,6-dihydrobenzo[h]quinazolin-4(3H)-one. The latter reacted with various nucleophiles (alkali metal alkoxides, piperazine, 2-sulfanylethanol) to give 2-(alkoxymethyl)-, 2-(piperazin-1-ylmethyl)-, and 2-{[(2-hydroxyethyl)sulfanyl]methyl}-5,5-dimethyl-5,6-dihydrobenzo[h]quinazolin- 4(3H)-ones. The condensation of 2-(chloromethyl)benzo[h]quinazoline with 2-thioxo derivatives of quinazoline and benzo[h]quinazolines led to the formation of bis-quinazolines in which 5,5-dimethyl-5,6- dihydrobenzo[h]quinazolin-4(3H)-one fragment is linked to quinazoline or benzo[h]quinazoline system through a CH2S bridge.  相似文献   

11.
The realm of natural products of early diverging fungi such as Mortierella species is largely unexplored. Herein, the nonribosomal peptide synthetase (NRPS) MalA catalysing the biosynthesis of the surface-active biosurfactants, malpinins, has been identified and biochemically characterised. The investigation of the substrate specificity of respective adenylation (A) domains indicated a substrate-tolerant enzyme with an unusual, inactive C-terminal NRPS module. Specificity-based precursor-directed biosynthesis yielded 20 new congeners produced by a single enzyme. Moreover, MalA incorporates artificial, click-functionalised amino acids which allowed postbiosynthetic coupling to a fluorophore. The fluorescent malpinin conjugate penetrates mammalian cell membranes via an phagocytosis-mediated mechanism, suggesting Mortierella oligopeptides as carrier peptides for directed cell targeting. The current study demonstrates substrate-specificity testing as a powerful tool to identify flexible NRPS modules and highlights basal fungi as reservoir for chemically tractable compounds in pharmaceutical applications.

Specificity profiling of a nonribosomal peptide synthetase of an early diverging fungus revealed high substrate flexibility. Feeding studies with click-functionalised amino acids enabled the production of fluorescent peptides targeting macrophages.  相似文献   

12.
General photoactivation of electron donor–acceptor (EDA) complexes between arylsulfonium salts and 1,4-diazabicyclo[2.2.2]octane with visible light or natural sunlight was discovered. This practical and efficient mode enables the production of aryl radicals under mild conditions, providing an unrealized opportunity for two-step para-selective C–H functionalization of complex arenes. The novel mode for generating aryl radicals via an EDA complex was well supported by UV-vis absorbance measurements, nuclear magnetic resonance titration experiments, and density functional theory (DFT) calculations. The method was applied to the regio- and stereo-selective arylation of various N-heterocycles under mild conditions, yielding an assembly of challengingly linked heteroaryl–(hetero)aryl products. Remarkably, the meaningful couplings of bioactive molecules with structurally complex drugs or agricultural pharmaceuticals were achieved to display favorable in vitro antitumor activities, which will be of great value in academia or industry.

General photoactivation of EDA complexes between arylsulfonium salts and 1,4-diazabicyclo[2.2.2]octane was discovered. This practical mode enables the generation of aryl radicals for C–H functionalization of arenes.  相似文献   

13.
Longeracemine, a member of the Daphniphyllum family of alkaloids contains a novel carbon framework featuring a highly functionalized 2-azabicyclo[2.2.1]heptane core as part of an overall 5/6/5/5/6/5 skeleton. A synthetic intermediate containing the core of longeracemine has been efficiently prepared by employing a stereoselective SmI2-mediated cascade reaction to advance a 7-azabicyclo[2.2.1]heptadiene to a 2-azabicyclo[2.2.1]heptene that is functionally poised for conversion to the natural product.

A synthetic intermediate containing the core of longeracemine, that is functionally poised for conversion to the natural product, has been efficiently prepared by employing a stereoselective SmI2-mediated cascade reaction.  相似文献   

14.
Alkylation of 3-methyl-1Н-acenaphtho[5,6]pyridazine with methyl and propyl iodides as well as with benzyl chloride in alkaline medium leads to the formation of the corresponding both N- and С-substituted pyridazine derivatives and also to the dimerization product of the initial compound. The ratio of obtained compounds depends on the used hydride, reaction temperature, and solvent.  相似文献   

15.
We present the use of gold sensitizers [Au(SIPr)(Cbz)] (PhotAu 1) and [Au(IPr)(Cbz)] (PhotAu 2) as attractive alternatives to state-of-the-art iridium-based systems. These novel photocatalysts are deployed in [2 + 2] cycloadditions of diallyl ethers and N-tosylamides. The reactions proceed in short reaction times and in environmentally friendly solvents. [Au(SIPr)Cbz] and [Au(IPr)(Cbz)] have higher triplet energy (ET) values (66.6 and 66.3 kcal mol−1, respectively) compared to commonly used iridium photosensitizers. These ET values permit the use of these gold complexes as sensitizers enabling energy transfer catalysis involving unprotected indole derivatives, a substrate class previously inaccessible with state-of-the-art Ir photocatalysts. The photosynthesis of unprotected tetracyclic spiroindolines via intramolecular [2 + 2] cycloaddition using our simple mononuclear gold sensitizer is readily achieved. Mechanistic studies support the involvement of triplet–triplet energy transfer (TTEnT) for both [2 + 2] photocycloadditions.

We present the use of gold sensitizers [Au(SIPr)(Cbz)] (PhotAu 1) and [Au(IPr)(Cbz)] (PhotAu 2) as attractive alternatives to state-of-the-art iridium-based systems.  相似文献   

16.
The paper reports the biosynthesis of the main alkylpyridine alkaloids, haminol-1 (1) and -2 (2), in the Mediterranean mollusc Haminoea orbignyana. Experiments were carried out by in vivo incorporation of [1,2- 13C2 acetate]. Data give full account for a polyketide origin of haminols in the Mediterranean molluscs, showing the biosynthesis of these 3-alkylpyridine alkaloids by elongation with acetate of a starter unit of nicotinic acid.  相似文献   

17.
We uncovered an asymmetric higher-order [10 + 2] cycloaddition reaction between diverse activated alkenes and a new type of π-allylpalladium complex-containing dipole-type 10π-cycloaddend, which was generated in situ from 2-methylene-1-indanols via a dehydrative insertion and deprotonation strategy under double activation of Pd(0) and phosphoric acid. A similar strategy was applied to an asymmetric higher-order [10 + 8] cycloaddition reaction or [10 + 4] cycloaddition reaction by using a heptafulvene derivative or a cyclic enone, respectively, as the acceptor. A variety of polycyclic frameworks imbedding an indene core were generally furnished in moderate to excellent yields with high levels of enantioselectivity by employing a newly designed chiral phosphoramidite ligand.

A type of π-allylpalladium complex-containing 10π-cycloaddend generated from 2-methylene-1-indanols under double activation of Pd(0) and phosphoric acid undergoes asymmetric higher-order [10 + 2] cycloadditions with diverse activated alkenes.  相似文献   

18.
We report a diastereoconvergent synthesis of anti-1,2-amino alcohols bearing N-containing quaternary stereocenters using an intermolecular direct C–H amination of homoallylic alcohol derivatives catalyzed by a phosphine selenide. Destruction of the allylic stereocenter during the selenium-catalyzed process allows selective formation of a single diastereomer of the product starting from any diastereomeric mixture of the starting homoallylic alcohol derivatives, eliminating the need for the often-challenging diastereoselective preparation of starting materials. Mechanistic studies show that the diastereoselectivity is controlled by a stereoelectronic effect (inside alkoxy effect) on the transition state of the final [2,3]-sigmatropic rearrangement, leading to the observed anti selectivity. The power of this protocol is further demonstrated on an extension to the synthesis of syn-1,4-amino alcohols from allylic alcohol derivatives, constituting a rare example of 1,4-stereoinduction.

We report a diastereoconvergent synthesis of anti-1,2-amino alcohols bearing N-containing quaternary stereocenters using an intermolecular direct C–H amination of homoallylic alcohol derivatives catalyzed by a phosphine selenide.  相似文献   

19.
A phosphite mediated stereoretentive C–H alkylation of N-alkylpyridinium salts derived from chiral primary amines was achieved. The reaction proceeds through the activation of the N-alkylpyridinium salt substrate with a nucleophilic phosphite catalyst, followed by a base mediated [1,2] aza-Wittig rearrangement and subsequent catalyst dissociation for an overall N to C-2 alkyl migration. The scope and degree of stereoretention were studied, and both experimental and theoretical investigations were performed to support an unprecedented aza-Wittig rearrangement–rearomatization sequence. A catalytic enantioselective version starting with racemic starting material and chiral phosphite catalyst was also established following our understanding of the stereoretentive process. This method provides efficient access to tertiary and quaternary stereogenic centers in pyridine systems, which are prevalent in drugs, bioactive natural products, chiral ligands, and catalysts.

N-Alkylpyridinium salt of chiral amines undergoes phosphite mediated stereoretentive migrations to generate chiral alkylpyridines. The role of phosphite on reactivity and stereoselectivity were examined to achieve a catalytic asymmetric version.  相似文献   

20.
Inspired by the biogenetic proposal of an intramolecular Diels–Alder (IMDA) cycloaddition, the total synthesis of natural product nahuoic acid A, a cofactor-competitive inhibitor of the epigenetic enzyme lysine methyl transferase SETD8, has been carried out. A non-conjugated pentaenal precursor was synthesized with high levels of stereoselectivity at seven stereogenic centers and with the appropriate control of double bond geometries. Although the IMDA reaction of the non-conjugated pentaenal using Me2AlCl for catalysis at −40 °C selectively afforded the trans-fused diastereomer corresponding to the Re-endo mode of cycloaddition, under thermal reaction conditions it gave rise to a mixture of diastereomers, that preferentially formed through the exo mode, including the cis-fused angularly-methylated octahydronaphthalene diastereomer precursor of nahuoic acid A. The natural product could be obtained upon oxidation and overall deprotection of the hydroxyl groups present in the Si-exo IMDA diastereomer.

The total synthesis of natural product nahuoic acid A, a cofactor-competitive inhibitor of the epigenetic enzyme lysine methyl transferase SETD8, has been carried out based on the biogenetic proposal of an intramolecular Diels–Alder (IMDA) cycloaddition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号