共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the first amine nucleophilic approach for the modular construction of enantioenriched protected α-quaternary amino acids. The key to success is the use of an alcohol solvent, which makes a rationally designed COOMe-bonded Cu-allenylidene electrophilic intermediate stable enough to couple with amine nucleophiles before its decomposition. The reaction features wide functional group tolerance with high enantioselectivity, typically >90% ee, and is amenable to the modification of commercially available bioactive molecules. The resultant protected α-amino acids could be readily converted into a number of precious enantioenriched amines featuring α-hindered tertiary carbon centers, which are otherwise synthetically quite challenging, including those of α-amino aldehyde, peptides or α-vinyl amino ester with >92% ee in excellent yields. This protocol could be utilized for the synthesis of the protected bioactive α-ethylnorvaline in 3 steps, a significant advancement in comparison to an 11-step sequence reported previously.We report the first amine nucleophilic approach for the modular construction of enantioenriched protected α-quaternary amino acids. 相似文献
2.
Daniel J. Leonard Francis Zieleniewski Isabelle Wellhfer Emily G. Baker John W. Ward Derek N. Woolfson Jonathan Clayden 《Chemical science》2021,12(27):9386
Quaternary amino acids are important tools for the modification and stabilisation of peptide secondary structures. Here we describe a practical and scalable synthesis applicable to quaternary alpha-arylated amino acids (Q4As), and the development of solid-phase synthesis conditions for their incorporation into peptides. Monomeric and dimeric α-helical peptides are synthesised with varying degrees of Q4A substitution and their structures examined using biophysical methods. Both enantiomers of the Q4As are tolerated in folded monomeric and oligomeric α-helical peptides, with the (R)-enantiomer slightly more so than the (S).Both R and S enantiomers of Fmoc-protected amino acids bearing α-aryl substituents may be made on gram scale. Solid-phase synthesis leads to helical peptides unperturbed by the presence of these additional α-aryl groups. 相似文献
3.
《Tetrahedron: Asymmetry》2001,12(6):897-901
Prochiral diesters bearing an oxindole skeleton were efficiently prepared from oxindole. Cholinesterase-catalyzed hydrolysis of prochiral dipropionate afforded an optically active monoalcohol of 95% e.e. The obtained monoalcohol might find use as a versatile intermediate in the enantioselective synthesis of indole alkaloids. 相似文献
4.
Fujimoto T Endo K Tsuji H Nakamura M Nakamura E 《Journal of the American Chemical Society》2008,130(13):4492-4496
Construction of a nonracemic all-carbon quaternary stereocenter at the alpha-position of beta-ketoesters was achieved by way of an indium(III)-catalyzed diastereoselective alpha-alkenylation reaction of chiral enamines with 1-alkynes. The enamine bearing a chiral auxiliary derived from l-isoleucine was added to the alkyne to give an alpha-alkenylated product in excellent yield and with a stereoselectivity better than 90% ee. One can ascribe the high selectivity to a chelate intermediate involving the auxiliary and the metal atom and the high yield to efficient interactions between the indium(III) atom and the alkyne. The selectivity increased as the reaction temperature was raised to 120 degrees C and decreased at higher temperatures. 相似文献
5.
Qi Zhang Mong-Feng Chiou Changqing Ye Xiaobin Yuan Yajun Li Hongli Bao 《Chemical science》2022,13(23):6836
Herein, we report an intermolecular, radical 1,2,3-tricarbofunctionalization of α-vinyl-β-ketoesters to achieve the goal of building molecular complexity via the one-pot multifunctionalization of alkenes. This reaction allows the expansion of the carbon ring by a carbon shift from an all-carbon quaternary center, and enables further C–C bond formation on the tertiary carbon intermediate with the aim of reconstructing a new all-carbon quaternary center. The good functional group compatibility ensures diverse synthetic transformations of this method. Experimental and theoretical studies reveal that the excellent diastereoselectivity should be attributed to the hydrogen bonding between the substrates and solvent.Herein, we report an intermolecular, radical 1,2,3-tricarbofunctionalization of α-vinyl-β-ketoesters to achieve the goal of building molecular complexity via the one-pot multifunctionalization of alkenes.A leading motive for the impressive achievements in the area of assembling molecular complexity is the transformation of simple feedstock chemicals into complex molecular skeletons with superior bioactive properties. In this respect, the direct functionalization of alkenes has been demonstrated as one of the most effective and simple strategies to meet this criterion at a high level. While the difunctionalization of alkenes in a one-pot process is the major theme of considerable interest in this field,1 the multifunctionalization of alkenes,2 for example, a 1,2,3-trifunctionalization of alkenes, has the power to simultaneously incorporate multifunctional groups. Therefore, this multifunctionalization reaction model can be regarded as an efficient and novel strategy to afford molecules with high structural diversity and complexity. However, such methods are elusive.During the last decades, radical alkene functionalizations have been revealed to be a powerful tool for building complex molecular frameworks by employing a radical initiator, a transition metal catalyst, or a photocatalyst.1f–i However, only several successful methods for the radical multifunctionalization of alkenes have been achieved. For example, the Studer group reported an elegant 1,2-boryl shift-enabled radical 1,2,3-trifunctionalization of allylboronic esters using AIBN as the radical initiator (Fig. 1a).3 Shi et al. disclosed an excellent photocatalytic perfluoroalkylation of a vinyl-substituted all-carbon quaternary center through 1,2-aryl migration (Fig. 1b).4 Herein, we report a new one-pot protocol to realize an intermolecular, radical 1,2,3-tricarbofunctionalization of α-vinyl-β-ketoesters through a cascade process of deconstruction–reconstruction of the all-carbon quaternary center (Fig. 1c).5Open in a separate windowFig. 1Radical 1,2,3-trifunctionalization of alkenes. (a) Studer''s work; (b) Shi''s work; (c) This work.The direct incorporation of a fluorine atom or fluorinated moieties into organic compounds has been extensively investigated and proved to be an significant synthetic strategy in the field of discovering new pharmaceuticals.6 Recently, we are interested in the radical functionalization of alkenes with fluoroalkyl groups,7 and we envisioned that, different from the typical Dowd–Beckwith8 ring expansion reaction,9 the addition of a fluoroalkyl radical to the C C double bond would generate an adduct radical species I, which will transform into the radical intermediate II upon ring expansion (Fig. 1c). Finally, the cascade C–C coupling affords the product with a reconstructed all-carbon quaternary center. However, there are several challenging issues that need to be addressed: (1) the carbon shift from an all-carbon quaternary center to afford a tertiary carbon center which is bulkier than the tertiary carbon center formed in a typical Dowd–Beckwith ring expansion reaction; (2) the reconstruction of all-carbon quaternary center from tertiary carbon radical II will meet the associated conformational restriction and steric congestion; (3) side reactions, such as 1,2-radical addition to the alkenyl group, homolytic couplings of the carbon radical intermediates I and II, and direct H-atom abstraction;10 (4) how to control the diastereomeric ratio of the products. To meet these challenges, we developed a novel method for the 1,2,3-trifunctionalization of alkenes using alkynyl triflones as both the CF3 (ref. 6) and alkynyl sources, providing the ring-expanded cyclic β-ketoesters with excellent diastereoselectivity and functional group diversity. In addition, good functional group compatibility of this method was observed, which ensures the diverse synthetic transformations. Moreover, hydrogen bonding between the substrates and 2,2,2-trifluoroethanol solvent was revealed to be the key factor for the excellent diastereoselectivity obtained in this reaction, and this result was confirmed by both experimental and theoretical studies.This study began by surveying radical initiators for 1,2,3-tricarbofunctionalizing α-vinyl-β-ketoester 1a with alkynyl triflone 2a11 (12 (13 dramatically increased the diastereoselectivity and (±)-3a could be obtained in an identical yield with an even higher dr value (dr > 20 : 1) (14 Without the addition of a radical initiator, a reaction did not happen ( Entry Solvent Yieldb (%) 1 EA 60 (dr = 13 : 1)c 2 EA 55 (dr = 11 : 1)d 3 EA 63 (dr = 12 : 1) 4 MTBE 45 (dr = 10 : 1) 5 DCE 63 (dr = 15 : 1) 6 Toluene Trace 7 DMF Trace 8 MeOH Trace 9 TFE 63 (dr > 20 : 1) 10e TFE 60 (dr > 20 : 1) 11f TFE 56 (dr > 20 : 1) 12g TFE 70 (dr > 20 : 1) 13h TFE 76 (65)i (dr > 20 : 1) 14j TFE 71 (dr > 20 : 1) 15 TFE Trace