首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
High–density polyethylene (HDPE) samples irradiated by Co60 gamma source have been investigated. The integration between the macromolecular structural units building the supermolecular structural organization is changed and different microdestruction mechanisms are achieved in the irradiation interval (0–20 Mrad). These microdestruction mechanisms are a result of specific radiation-induced crosslinking for the different irradiation doses. The crosslinking unites the primary structural units into macromolecular networks and lattices, which have a different effect upon the micro- and macrocharacteristics of the polymer, i.e., local micro-Brownian mobility, elongation at break, etc. © 1996 John Wiley & Sons, Inc.  相似文献   

2.
Polyethylene-polyethylene blend films were prepared by gelation/crystallization from semidilute solution by using ultrahigh molecular-weight (mw) polyethylene (UHMWPE) (mw=6×106) and low molecular weight polyethylene (LMWPE) (mw=4×104). The UHMWPE/LMWPE compositions chosen were 50/50, 67/33, and 91/9. Elongation was carried out in a hot oven at 115–130°C. The drawn films were exposed to an electron beam under nitrogen flow. Radiation doses chosen were 10, 20, 40, and 100 Mrad. crosslinking caused a significant effect in improving high temperature resistance for the blend film with draw ratio of 20 in the case of irradiation doses less than 20 Mrad. The elongation beyond 20 times and high doses beyond 20 Mrad hampered the crosslinking effect and the specimens were easily torn manually. This is thought to be due to the fact that the excess irradiation dose causes main chain scission apart from crosslinking.  相似文献   

3.
Polypropylene films were irradiated with 60Co γ-rays in vacuum or in air and stored in air. Just after irradiation, the concentration of carbonyl group of the sample irradiated in air only increased with dose. The concentrations of both samples increased with storage time. The more the absorbed doses, the higher the increasing rates. The increasing rate of the concentration of carbonyl group during irradiation in air was higher than those during storage in air. Just after irradiation, the tensile strengths and the elongations of the both samples somewhat increased with dose at the doses less than 5 Mrad, but decreased at doses more than 13 Mrad. The tensile strength and the elongation of the sample irradiated in air decreased with storage time. Those of the sample irradiated in vacuum also decreased with storage time but the decreasing rates were much smaller than those in the sample irradiated in air. The gel fractions of the samples irradiated in vacuum and annealed in vacuum were somewhat higher than those irradiated in vacuum and not annealed. To elucidate high oxidation rate in the sample irradiated in air during and after irradiation, reaction mechanisms were discussed. To clarify the difference of mechanical properties between the samples irradiated in vacuum and in air, the effect of crosslink was considered, together with the oxidation.  相似文献   

4.
Linear low density polyethylene (LLDPE) film was irradiated by electron beam in air or argon prior to grafting in aqueous solutions of acrylamide containing 0.05% of Mohr's salt. The grafting kinetics was studied with pre-irradiation doses in the range of 2.5–25 Mrad and in the temperature range of 40–70°C. Grafting rates and final degrees of grafting were higher for LLDPE pre-irradiated in air than for LLDPE pre-irradiated in argon. The overall activation energies for the grafting reaction were dose-dependent. Above 5 Mrad, the overall activation energies were higher for LLDPE pre-irradiated in argon which is interpreted as being due to crosslinking of the LLDPE. © 1995 John Wiley & Sons, Inc.  相似文献   

5.
Chain scission and crosslinking rates have been derived from molecular mass distributions obtained by gel permeation chromatography at different stages during photodegradation of various thermoplastics exposed to ultraviolet irradiation (UV). Results are given for a high density polyethylene (HDPE); a low density polyethylene (LDPE); a linear low density polyethylene (LLDPE); a polypropylene homopolymer (PPHO); and a polypropylene copolymer (PPCO). As the oxidation progressed, it was observed that the scission rate for HDPE, LLDPE, PPHO and PPCO increased near to the exposed surface whereas for LDPE the rate remained almost unchanged. The crosslink rate fell near to the surface with HDPE and LDPE but increased with PPHO and PPCO. The reaction rates near to the bar centre (∼1.5 mm from the exposed surface) were low for HDPE, PPHO and PPCO; this is attributed to oxygen starvation, caused by consumption of oxygen by rapid reaction near the surface. Reaction was observed in the interior with LDPE and LLDPE, presumably because of a combination of a higher oxygen diffusion rate than for HDPE and a lower rate of consumption of oxygen near the surface than with the polypropylenes.  相似文献   

6.
The effect of 60Co γ-radiation on the mechanical properties, surface morphology and failure characteristics of blends of polypropylene [PP] and ethylene-vinyl acetate rubber [EVA] has been studied with specific reference to the effect of blend ratio, dynamic crosslinking of the rubber phase and absorbed radiation doses. Samples were subjected to radiation in the dose range of 1 to 100 Mrad in air at room temperature at the rate of 0·321 Mrad/h. Both chain scission and crosslinking occur simultaneously in the blend samples. PP and blends containing higher proportions of PP (≥50%) undergo predominant chain scission at lower doses (≤50 Mrad), which causes a drastic drop in tensile strength, followed by a levelling out at higher doses of 100 Mrad. EVA undergoes crosslinking at lower doses resulting in an increase in tensile strength in the dose range 1 to 10 Mrad followed by a decrease in the range 10–25 Mrad. Further increase in radiation dose has little effect on tensile strength. The effect of radiation on stress-strain behaviour, elongation at break, energy at rupture and hardness was also studied. The morphology of the irradiated surfaces after an absorbed dose of 100 Mrad has been examined by scanning electron microscopy (SEM). In order to understand the effect of γ-radiation on the failure mechanism, tensile failure surfaces of both unirradiated and irradiated samples have also been examined by SEM.  相似文献   

7.
A report is given of structural investigations on high molecular weight, highly linear polyethylene crosslinked by irradiation with fast electrons in both the molten and the solid state. For the melt-irradiated samples it could be concluded from X-ray measurements that insertion of lattice distortions of the first kind occurs on crystallization. The density of these distortions shows a distinct maximum for an irradiation dose of 25 Mrad. It is assumed, that for lower doses the material crystallizes according to a folding procedure, for higher doses according to a micellar one. For solid state irradiated samples crystalline structure and morphology are not influenced measurably by the crosslinking. The recrystallization behaviour is independent on the dose for the resulting inhomogeneous network.presented in part at the Frühjahrstagung of the Deutsche Physikalische Gesellschaft, Fachausschuß Physik der Hochpolymeren, Marburg (1981).  相似文献   

8.
The post-irradiation dielectric behaviour of different polyethylenes (PEs) has been studied by means of dielectric loss (tan δ) analysis over the wide temperature (25–325 K) and frequency (1 kHz–1 MHz) ranges. For this reason, low density polyethylene (LDPE), linear low density polyethylene (LLDPE) and high density polyethylene (HDPE) samples were previously gamma irradiated in air to absorbed dose of 300 kGy. The irradiated samples were divided into two groups, and for the first one annealing treatment which can substantially reduce the concentration of free radicals were employed. For the second group, e.g. samples stored in air at room temperature after irradiation, post-irradiation evolution in free radical concentration, dielectric relaxation spectra and carbonyl content was investigated as a function of storage time, up to 90 days. Dielectric relaxation behaviour is related to differences in the initial structures of PEs (such as branching, crystallinity, etc.) and to the radiation-induced effects; carbonyl groups that were introduced by irradiation and/or delayed (post-irradiation) oxidation were regarded as tracer groups. Electron spin resonance (ESR), differential scanning calorimetry (DSC), infrared (IR) spectroscopy and gel measurements were used to determine the changes in free radical concentration, crystal fraction, oxidation and degree of network formation, respectively.  相似文献   

9.
Summary: A series of polyethylene (PE) blends consisting of a high density polyethylene (HDPE) and a linear low density polyethylene (LLDPE) with a butene-chain branch density of 77/1000 carbon was prepared at different concentrations. The LLDPE only crystallized below 50 °C, therefore, above 80 °C and below the melting temperature of HDPE, only HDPE crystallized in the PE blends. A specifically designed multi-step experimental procedure based on thermal analysis technique was utilized to monitor the liquid–liquid phase separation (LLPS) of this set of PE blends. The main step was first to quench the system from the homogeneous temperatures and isothermally anneal them at a prescribed temperature higher than the equilibrium melting temperature of the HDPE for the purpose of allowing the phase morphology to develop from LLPS, and then cool the system at constant rate to record the non-isothermal crystallization. The crystallization peak temperature (Tp) was used to character the crystallization rate. Because LLPS results in HDPE-rich domains where the crystallization rates are increased, this technique provided an experimental measure to identify the binodal curve of the LLPS for the system indicated by increased Tp. The result showed that the LLPS boundary of the blend measured by this method was close to that obtained by phase contrast optical microscopy method. Therefore, we considered that the thermal analysis technique based on the non-isothermal crystallization could be effective to investigate the LLPS of PE blends.  相似文献   

10.
The aim of this paper is to investigate structural changes of linear low density polyethylene (LLDPE) modified by ionizing radiation (gamma rays) in different atmospheres. The gamma radiation process for modification of commercial polymers is a widely applied technique to promote new physical–chemical and mechanical properties. Gamma irradiation originates free radicals which can induce chain scission or recombination, providing its annihilation, branching or crosslinking. This polymer was irradiated with gamma source of 60Co at doses of 5, 10, 20, 50 or 100 kGy at a dose rate of 5 kGy/h. The changes in molecular structure of LLDPE, after gamma irradiations were evaluated using thermogravimetric analyzer (TGA) and tensile machine and oscillatory rheology. The results showed the variations of the properties depending on the dose at each atmosphere.  相似文献   

11.
高密度聚乙烯粉末的电子束辐射接枝王勇,黄劲,李瑞海(成都科技大学纺织工学院,成都610065)(成都科技大学高分子材料系610065)关键词:HDPE粉末,电子束辐射,接枝聚合本文采用电子束予辐射法使聚乙烯粉末表面产生活性中心,然后通过液-固相接枝共...  相似文献   

12.
The degradation of the nearby generation of high‐density polyethylene (HDPE) loaded with 2.5% of carbon black (CB) content (ie, HDPE/CB composites) is studied experimentally with the end goal of radiation safety applications. The impact of various γ‐irradiation doses in the air on the nanostructure of free volume and durability has been researched. The free volume was evaluated utilizing the positron annihilation lifetime (PAL) technique while the durability was contemplated by measuring the mechanical properties such as strain, elongation at break, and tear resistance. The electrical conductivity was explored to demonstrate the impact of the irradiation dose on the conductivity of the samples. Surface morphology studies using a scanning electron microscope (SEM) showed the surface fracture of HDPE/CB composites for unirradiated and irradiated samples. The surface roughness of the HDPE/CB GMs increases with increasing the irradiation dose. Among various uses of HDPE/CB composites, sheets are liners of dumps used to dispose of interim storage for Low and Medium Level Waste of NORMs and TENORMs. HDPE Geomembrane liners proved its utilization from the results of present research of electrical, mechanical tests, and SEM morphology to have the required resistance to weather conditions.  相似文献   

13.
The effect of gamma irradiation on non-isothermally crystallized low density polyethylene (LDPE) has been studied by thermal-mechanical analysis (TMA) and transmission and scanning electron microscopy (TEM and SEM, respectively). Analysis of the TMA curves of the irradiated samples shows that the radiation-induced crosslinking of the macromolecular chains in the dose range 0–10 Mrad causes an increase, decrease and partial freezing of the mechanical microstresses located at the phase surfaces in the bulk of the polymer. These effects are explained in terms of the physical kinetics and macromolecular mobility. At temperatures above 120 °C., gamma-irradiated LDPE with doses above 5 Mrad develops a physical state corresponding to a high elastic state with thermotropic mesophases. Below 5 Mrad, controllable changes of the melting entropy and enthalpy of the crystalline regions and the free energy of the crystalline lamellae can be achieved. The TEM and SEM study shows an increase in the degree of co-operation of the sublevels of the superstructural molecular organization with the irradiation dose, even in areas that undergo plastic microdestruction.  相似文献   

14.
The mechanical and physical properties of blends based essentially on nitrile butadiene rubber (NBR) and different ratios of high density polyethylene (HDPE) up to 25 parts per hundred part of rubber (phr) before and after electron beam irradiation were investigated. The values of tensile strength (TS), tensile modulus at 50% elongation (M50), hardness and gel fraction % (GF%) of NBR/HDPE blends were increased with both irradiation dose and by increasing the content of HDPE in the blends. On the other hand, the values of elongation at break (E b ) were decreased with both irradiation dose and the content of HDPE in the blends. By loading NBR/HDPE (100/25) blend with ethylene vinyl acetate (EVA) copolymer the mechanical and physico-chemical properties were improved. Moreover, the degree of improvement is proportional to the loading content of EVA.  相似文献   

15.
In this study, highly oriented shish-kebab structure was achieved via imposing oscillatory shear on the melts of linear low density polyethylene (LLDPE)/high density polyethylene (HDPE) blends during the packing stage of injection molding. To investigate the effect of molecular weight of HDPE on the formation of shish-kebab structure, two kinds HDPE with large melt flow index (low molecular weight) and small melt flow index (high molecular weight) were added into LLDPE matrix. The structural characteristics of LLDPE/HDPE blends were systematically elucidated through two-dimensional wide-angle x-ray scattering, scanning electron microscopy, and differential scanning calorimetry. Interestingly, an unexpected molecular weight dependence of shish-kebab structure of the prepared samples was found that the addition of HDPE with low molecular weight resulted in an higher degree of orientation, better regularity of lamellar arrangement, thicker lamellar size, and higher crystal melting temperature than that adding HDPE with high molecular weight. Correspondingly, the blend containing low molecular weight HDPE had better tensile strength. A possible mechanism was suggested to elucidate the role of HDPE molecular weight on the formation of shish-kebab structure in the oriented blends, considering the change of chain mobility and entanglement density with change of molecular weight.  相似文献   

16.
Adhesive effect of linear low density polyethylene (LLDPE) gels in organic solvents such as decalin, tetralin, and o-dichlorobenzene on high density polyethylene (HDPE) moldings has been investigated by shearing tests, and DSC measurements. For all of the gels the temperature at which the heated gel starts to exhibit the adhesive effect was about 70 °C, which is similar to the result of LDPE gel. In particular, when heated at 110 °C, LLDPE gel in tetralin showed such a strong bond strength that polyethylene plates of 3 mm in thickness and 20 mm in width gave rise to necking. It was found that LLDPE gel behaved as though it added LDPE gel to HDPE gel namely LDPE-like components in LLDPE resin exerted the adhesive effect at lower heating temperature, HDPE-like components exerted the strong adhesive effect at higher heating temperature.  相似文献   

17.
The microstructure and conductive mechanism of high density polyethylene/carbon black (HDPE/CB) compositewere investigated by positron annihilation lifetime spectroscopy (PALS). The PALS were measured in two series of samples,one with various CB contents in the composites and the other with various γ-irradiation doses in HDPE/CB compositecontaining 20 wt% CB. It was found that CB particles distribute in the amorphous regions, the CB critical content value inHDPE/CB composite is about 16.7 wtO/ and the suitable γ-irradiation dose for improving the conductive behavior ofHDPE/CB composite is about 20 Mrad. T'he result observed for the second set of samples suggests that γ-irradiation causesnot only cross-linking in amorphous regions but also destruction of the partial crystalline structure. Therefore, a suitableirradiation dose, about 20 Mrad, can induce sufficient cross-linking in the amorphous regions without enhancing thedecomposition of crystalline structure, so that the positive temperature coefficient (PTC) effect remains while the negativetemperature coefficient (NTC) effect is suppressed. A new interpretation of the conductive mechanism, which might providea more detailed explanation of the PTC effect and the NTC effect has been proposed.  相似文献   

18.
The use of laser radiation to initiate the crosslinking process in ultra low‐density polyethylene (ULDPE) and high‐density polyethylene (HDPE) was evaluated. The process was found to be most effective for pulsed laser irradiation when the polymer was traced with a photoinitiator: 4‐chlorobenzophenone (CBP). The gel content measurements proved that crosslinking took place in all the irradiated samples. The degree of crosslinking was measured for different values of irradiation energy, temperature, photoinitiator concentration and the nature and type of crosslinking agents. The effects of all these parameters on the degree of crosslinking and the consequent effects on mechanical properties of the polymers were analyzed. Also found in the present study is the fact that a better efficiency of crosslinking was achieved at longer laser irradiation wavelength. The ultimate tensile stress and elongation at fracture were measured for all cross‐linked samples and compared with those of the controlled ones.

  相似文献   


19.
Ultra‐high molecular weight polyethylene (UHMWPE) was irradiated in air with high‐energy (9 MeV), pulsed electron beams to doses ranging from 2.5 to 100 Mrad and subsequently heat treated at 120°C for a time period of 120 min. Surface characterization of the target side of irradiated UHMWPE samples was carried out both before and after the heat treatment by means of attenuated total reflection Fourier‐transform infrared (FTIR/ATR) spectroscopy and microhardness measurement. The obtained results provided further evidence supporting our earlier observation (Tretinnikov, O. N.; Ogata, S.; Ikada, Y. Polymer 1998, 39, 6115) that thermal decomposition of hydroperoxides formed upon irradiation of UHMWPE with high‐energy, pulsed electron beams in air leads to surface crosslinking, and the subsequent surface hardening of the irradiated polymer. Importantly, we found that this phenomenon has the highest contribution to the surface hardness enhancement of the polymer when the radiation dose is in the range of 10–30 Mrad. In addition, we found that this irradiation and subsequent heat treatment of UHMWPE in air does not lead to formation of carbonyl‐containing products unless the radiation dose exceeds 20 Mrad. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1503–1512, 1999  相似文献   

20.
High density polyethylene (HDPE), linear low density polyethylene (LLDPE), and isotactic polypropylene (PP) containing antioxidant additives at low or zero levels were extruded and blown moulded as films. An HDPE/LLDPE commercial blend containing a pro-oxidant additive (i.e., an oxo-biodegradable blend) was taken from the market as supermarket bag. These four polyolefin samples were exposed to natural weathering for one year during which their structure and thermal and mechanical properties were monitored. This study shows that the real durability of olefin polymers may be much shorter than centuries, as in less than one year the mechanical properties of all samples decreased virtually to zero, as a consequence of severe oxidative degradation, that resulted in substantial reduction in molar mass accompanied by a significant increase in content of carbonyl groups. PP and the oxo-bio HDPE/LLDPE blend degraded very rapidly, whereas HDPE and LLDPE degraded more slowly, but significantly in a few months. The main factors influencing the degradability were the frequency of tertiary carbon atoms in the chain and the presence of a pro-oxidant additive. The primary (sterically hindered phenol) and secondary (phosphite) antioxidant additives added to PP slowed but did not prevent rapid photo-oxidative degradation, and in HDPE and LLDPE the secondary antioxidant additive had little influence on the rate of abiotic degradation at the concentrations used here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号