首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《European Polymer Journal》1987,23(5):383-388
Trialkyl phosphites react with cyanoisopropylperoxyl radicals, generated by thermolysis of azobis(isobutyronitrile) in the presence of oxygen, to give the corresponding phosphates with rate constants of the order of 103 M−1 sec−1 at 65°C. Phenyl phosphites are oxidized also. A small amount of cyanoisopropyl phosphite is formed by substitution of the phosphite by alkyloxyl radicals leading to phenoxyl radicals. Sterically hindered aryl phosphites react with cyanoisopropylperoxyl radicals to yield the corresponding phosphates and alkoxyl radicals which in a second step react with phosphite by substitution releasing a sterically hindered phenoxyl radical. Therefore, sterically hindered phosphites are capable of acting as chain-terminating primary antioxidants. Because the rate constants of reaction of these phosphites with peroxyl radicals are only in the range of 102 M−1 sec−1 and 100 times smaller than those of phenols, phosphites should be less active as primary antioxidants than phenols.  相似文献   

2.
We demonstrate the ability of a sensor containing a tethered fluorescein-phenol structure to react with peroxyl radicals and with an oxidizing agent such as potassium ferricyanide. This latter reaction yields the corresponding peroxyl radical as observed by EPR analysis. We propose that the reaction of the sensor with peroxyl and alkoxyl radicals is also initiated by the formation of the phenoxyl radicals, which is followed by radical-radical reactions and product hydrolysis responsible for the release of fluorescein. The proposed mechanism is based on results obtained by laser flash photolysis, HPLC and EPR studies of the reaction of peroxyl and alkoxyl radicals with 4-phenoxylphenol, a molecule used to mimic the behavior of the sensor.  相似文献   

3.
Absolute rate constants have been measured for the reactions of the primary and specific one-electron oxidant radicals with the protonated form of trifluoperazine (TFP). The primary radicals, e- aq and OH·, react with TFP at diffusion controlled rates. The transients thus produced have been characterized. Halogenated aliphatic peroxyl radicals oxidize TFP with rate constants between 107 and 108 dm3 mol-1 s-1, depending on the structure of the peroxyl radical. The reactivity of peroxyl radicals has been found to vary with Taft's inductive parameter. Oxidation of TFP at acidic pH has been studied using stopped-flow technique. The reaction between TFP radical cation and ascorbic acid has also been examined using pulse radiolysis technique. The results indicate that TFP radical cation is repaired by ascorbate. One-electron reduction potential of TFP · + /TFP at pH 3.5 has been calculated to be 0.964 V vs. NHE.  相似文献   

4.
由于脂质过氧化反应(LPO)是导致人体疾病(如肝炎、肝硬化、动脉硬化、脑溢血等)的主要原因, 而黄酮类化合物是一类很强的过氧化反应抑制剂, 因此有必要研究其化学结构与过氧化反应的关系及其抗氧化机理.本文选择α-羟乙基过氧自由基为脂质过氧自由基的模拟物, 采用脉冲辐解方法研究了乙醇溶液中4种典型的黄酮类化合物(槲皮素、芦丁、儿茶素以及黄岑甙)与α-羟乙基过氧自由基的反应动力学, 测得其反应活性顺序为:芦丁>槲皮素>黄岑甙>儿茶素. 同时以黄酮体和邻苯二酚为黄酮类化合物不同结构特征的模型化合物, 用脉冲辐解法测得二者与α-羟乙基过氧自由基的反应速率常数分别为(1.7±0.1)×106和(2.9±0.1)×105 mol-1·dm3·s-1.实验结果表明, 在黄酮类化合物与α-羟乙基过氧自由基的反应中, A环C5位的羟基, C环C2=C3或B-C环的大π键和B环邻二羟基共存时清除α-羟乙基过氧自由基活性最好, 而且C环C2=C3或B-C环大π键的清除活性好于B环邻二羟基, 同时C环是否含有C3-醣甙结构对清除作用没有明显影响. 因此我们推测在黄酮类化合物抑制脂质过氧化反应过程中, 起主要作用的是C环C2=C3或B-C环的大π键与脂质过氧自由基的双键加成反应.  相似文献   

5.
Enthalpy, activation energy, and rate constant of 9 alkyl, 3 acyl, 3 alkoxyl, and 9 peroxyl radicals with alkanethiols, benzenethiol, and L ‐cysteine are calculated. The intersection parabolas model is used for activation energy calculations. Depending on the structure of attacking radical, the activation energy of reactions with alkylthiols varies from 3 to 43 kJ mol?1 for alkyl radicals, from 7 to 9 kJ mol?1 for alkoxyl, and from 18 to 35 kJ mol?1 for peroxyl radicals. The influence of adjacent π‐bonds on activation energy is estimated. The polar effect is found in reactions of hydroxyalkyl and acyl radicals with alkylthiols. The steric effect is observed in reactions of alkyl radicals with tert‐alkylthiols. All these factors are characterized via increments of activation energy. Quantum chemical calculations of activation energy and geometry of transition state were performed for model reactions: C?H3 + CH3SH, CH3O? + CH3SH, and HO2? + CH3SH with using density functional theory and Gaussian‐98. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 41: 284–293, 2009  相似文献   

6.
Whenever free radicals are formed, independent of whether this occurs thermally, is induced by UV or ionizing irradiation, or takes place in redox reactions, they are converted rapidly into the corresponding peroxyl radicals in the presence of oxygen. Peroxyl radical reactions in aqueous environments are observed not only in aquatic systems (e.g., rivers, lakes and oceans) but also in the living cell and to a considerable degree even in the atmosphere (in water droplets). The peroxyl radical chemistry occurring in this medium is often very different from that observed in the gas phase or in organic solvents. In spite of the great importance of these reactions in medicine (for example in anti-cancer irradiation therapy and ischaemia) there have been comparatively few studies of peroxyl reactions in aqueous media. Radiation-chemical techniques such as pulse radiolysis offer the best means for carrying out such studies, so that it is not surprising that the majority of the information available in this area has been obtained with the help of radiation-chemical methods. The radiation chemistry of water can be con trolled in such a manner that the main products are ˙OH radicals (90 % yield), which react with substrate molecules to give substrate radicals and in the presence of oxygen to give substrate peroxyl radicals. The experimental conditions can also be varied in such a way that HO/O radicals can be formed in 100 % yield and caused to react with substrates. We therefore have a simple access to these intermediates, which are extremely important in biological systems. A detailed product analysis, supported by kinetic studies carried out with the help of pulse radiolysis, has been used to clarify the chemistry of a series of peroxyl radicals, so that sufficient material is now available to justify a review of the variety of the peroxyl radical reactions studied by means of radiation-chemical methods. A more general survey of the physical properties of the peroxyl radicals and their unimolecular and bimolecular reactions will be followed by a discussion of selected examples of various classes of substance. Because of the great biological importance of radical-induced DNA damage this area will also be treated briefly.  相似文献   

7.
Six substituted 5-pyrimidinols were synthesized, and the thermochemistry and kinetics of their reactions with free radicals were studied and compared to those of equivalently substituted phenols. To assess their potential as hydrogen-atom donors to free radicals, we measured their O-H bond dissociation enthalpies (BDEs) using the radical equilibration electron paramagnetic resonance technique. This revealed that the O-H BDEs in 5-pyrimidinols are, on average, about 2.5 kcal mol(-1) higher than those in equivalently substituted phenols. The results are in good agreement with theoretical predictions, and confirm that substituent effects on the O-H BDE of 5-pyrimidinol are essentially the same as those on the Obond;H BDE in phenol. The kinetics of the reactions of these compounds with peroxyl radicals has been studied by their inhibition of the AIBN-initiated autoxidation of styrene, and with alkyl and alkoxyl radicals by competition kinetics. Despite their larger O-H BDEs, 5-pyrimidinols appear to transfer their phenolic hydrogen-atom to peroxyl radicals as quickly as equivalently substituted phenols, while their reactivity toward alkyl radicals far exceeds that of the corresponding phenols. We suggest that this rate enhancement, which is large in the case of alkyl radical reactions, small in the case of peroxyl radical reactions, and nonexistent in the case of alkoxyl radical reactions, is due to polar effects in the transition states of these atom-transfer reactions. This hypothesis is supported by additional experimental and theoretical results. Despite this higher reactivity of 5-pyrimidinols towards radicals compared to phenols, electrochemical measurements indicate that they are more stable to one-electron oxidation than equivalently substituted phenols. For example, the 5-pyrimidinol analogues of 2,4,6-trimethylphenol and butylated hydroxytoluene (BHT) were found to have oxidation potentials approximately 400 mV higher than their phenolic counterparts, but reacted roughly one order of magnitude faster with alkyl radicals and at about the same rate with peroxyl radicals. The 5-pyrimidinol structure should, therefore, serve as a useful template for the rational design of novel air-stable radical scavengers and chain-breaking antioxidants that are more effective than phenols.  相似文献   

8.
Hydroxyaryl alkyl tellurides are effective antioxidants both in organic solution and aqueous biphasic systems. They react by an unconventional mechanism with ROO. radicals with rate constants as high as 107 M ?1 s?1 at 303 K, outperforming common phenols. The reactions proceed by oxygen atom transfer to tellurium followed by hydrogen atom transfer to the resulting RO. radical from the phenolic OH. The reaction rates do not reflect the electronic properties of the ring substituents and, because the reactions occur in a solvent cage, quenching is more efficient when the OH and TeR groups have an ortho arrangement. In the presence of thiols, hydroxyaryl alkyl tellurides act as catalytic antioxidants towards both hydroperoxides (mimicking the glutathione peroxidases) and peroxyl radicals. The high efficiency of the quenching of the peroxyl radicals and hydroperoxides could be advantageous under normal cellular conditions, but pro‐oxidative (thiol depletion) when thiol concentrations are low.  相似文献   

9.
The reactions of .OH radicals with deoxyribose, DR, form five different DR. radicals, only one of which is transformed into malondialdehyde (MDA)‐like products. The radiolytic yield of the MDA‐like products increases with the increase in the DR concentration indicating that some of the initially formed “unproductive” radicals react with DR to form the “productive” radicals. The yield of the MDA‐like products also increases with the dose rate delivered to the solution suggesting that the formation of the MDA‐like products involves the reaction of the “productive” radicals with a radical. The addition of ascorbate, AH?, to the solution decreases the yield of the MDA‐like products as expected from the relative rates of the reaction of DR and AH? with .OH radicals. On the other hand the addition of the exogenous thiol, N‐acetylcysteine (NAC), to the solutions decreases the yield of the MDA‐like products considerably more than expected from the rate constants of the reaction with .OH radicals. The addition of the endogenous thiol, glutathione (GSH), to the solutions affects the yield of the MDA‐like products at low concentration less than expected and at “high” concentrations more than expected from the rate constant of the reaction. Addition of low concentration of AH? to solutions containing GSH increases considerably its antioxidant activity whereas addition of small concentrations of AH? to solutions containing NAC has no effect on its antioxidant activity. The results point out that the DR. radicals react differently with NAC and GSH and that the GS. and NAC. radicals react differently with DR, the GS. radical being considerably more active than the NAC. radical. Thus it has to be concluded that the relative activity of antioxidants depends also on the rate constants of many secondary reactions and on the concentrations of all the solutes present in the system.  相似文献   

10.
Helical shaped fused bis-phenothiazines 1 – 9 have been prepared and their red-ox behaviour quantitatively studied. Helicene radical cations (Hel.+) can be obtained either by UV-irradiation in the presence of PhCl or by chemical oxidation. The latter process is extremely sensitive to the presence of acids in the medium with molecular oxygen becoming a good single electron transfer (SET) oxidant. The reaction of hydroxy substituted helicenes 5 – 9 with peroxyl radicals (ROO.) occurs with a ‘classical’ HAT process giving HelO. radicals with kinetics depending upon the substitution pattern of the aromatic rings. In the presence of acetic acid, a fast medium-promoted proton-coupled electron transfer (PCET) process takes place with formation of HelO. radicals possibly also via a helicene radical cation intermediate. Remarkably, also helicenes 1 – 4 , lacking phenoxyl groups, in the presence of acetic acid react with peroxyl radicals through a medium-promoted PCET mechanism with formation of the radical cations Hel.+. Along with the synthesis, EPR studies of radicals and radical cations, BDE of Hel-OH group (BDEOH), and kinetic constants (kinh) of the reactions with ROO. species of helicenes 1 – 9 have been measured and calculated to afford a complete rationalization of the redox behaviour of these appealing chiral compounds.  相似文献   

11.
The apparently unpredictable behaviour of β-carotene in the supplementation of the diet of smokers is discussed in the light of the reactions of peroxyl radicals with β-carotene in the absence of oxygen. The decay of tert-butylperoxyl radicals in the presence of β-carotene was studied at ambient temperature in non-polar solvents by ESR spectroscopy. The primary reaction in the absence of oxygen is interpreted as a spin-trapping effect of a peroxyl radical by β-carotene producing an intermediate labile free radical, which disappears after recombination with a second tert-butylperoxyl radical. The result is the transformation of β-carotene to a diamagnetic compound with two peroxy bonds. In the presence of chelating transition metals with unpaired d-electrons as electron donors the peroxy group of the oxidized β-carotene can be split to alkoxyl free radicals. The primary attack of tert-butylperoxyl radicals is completely inhibited in the presence of vitamin E followed by production of free aryloxy radicals and the presence of oxygen has no significant effect on this reaction. Spin-trapping of peroxyl radicals by the double bond of vitamin A leads to its oxidation in the absence of vitamin E. Transition metal ions such as Co, Cr, Fe, and Mn, known to be present in the aerosol of cigarette smoke, homolyse the peroxyl bonds of peroxidised β-carotene, which results in cell damage.  相似文献   

12.
Reactions of peroxyl radicals and peroxynitrite with o-vanillin (2-hydroxy 3-methoxy benzaldehyde), a positional isomer of the well-known dietary compound vanillin, were studied to understand the mechanisms of its free radical scavenging action. Trichloromethylperoxyl radicals (CCl3O 2 · ) were used as model peroxyl radicals and their reactions with o-vanillin were studied using nanosecond pulse radiolysis technique with absorption detection. The reaction produced a transient with a bimolecular rate constant of approx. 105 M−1s−1, having absorption in the 400–500 nm region with a maximum at 450 nm. This spectrum looked significantly different from that of phenoxyl radicals of o-vanillin produced by the one-electron oxidation by azide radicals. The spectra and decay kinetics suggest that peroxyl radical reacts with o-vanillin mainly by forming a radical adduct. Peroxynitrite reactions with o-vanillin at pH 6.8 were studied using a stopped-flow spectrophotometer. o-Vanillin reacts with peroxynitrite with a bimolecular rate constant of 3 × 103 M−1s−1. The reaction produced an intermediate having absorption in the wavelength region of 300–500 nm with a absorption maximum at 420 nm, that subsequently decayed in 20 s with a first-order decay constant of 0.09 s−1. The studies indicate that o-vanillin is a very efficient scavenger of peroxynitrite, but not a very good scavenger of peroxyl radical. The reactions take place through the aldehyde and the phenolic OH group and are significantly different from other phenolic compounds.  相似文献   

13.
Model systems, based on aqueous solutions containing isoflurane (CHF(2)OCHClCF(3)) as an example, have been studied in the presence and absence of methionine (MetS) to evaluate reactive fates of halogenated hydroperoxides and peroxyl and alkoxyl radicals. Primary peroxyl radicals, CHF(2)OCH(OO*)CF(3), generated upon 1-e-reduction of isoflurane react quantitatively with MetS via an overall two-electron oxidation mechanism to the corresponding sulfoxide (MetSO). This reaction is accompanied by the formation of oxyl radicals CHF(2)OCH(O*)CF(3) that quantitatively rearrange by a 1,2-hydrogen shift to CHF(2)OC*(OH)CF(3). According to quantum-chemical calculations, this reaction is exothermic (DeltaH = -5.1 kcal/mol) in contrast to other potentially possible pathways. These rearranged CHF(2)OC*(OH)CF(3) radicals react further via either of two pathways: (i) direct addition of oxygen or (ii) deprotonation followed by fluoride elimination resulting in CHF(2)OC(O)CF(2)*. Route i yields the corresponding CHF(2)OC(OO*)(OH)CF(3) peroxyl radicals, which eliminate H+/O(2)*-. The resulting ester, CHF(2)OC(O)CF(3), hydrolyzes further, accounting for the formation of HF, trifluoroacetic acid, and formic acid with a contribution of 45% and 80% in air- and oxygen-saturated solutions, respectively. A competitive pathway (ii) involves the reactions of the secondary peroxyl radicals, CHF(2)OC(O)CF(2)OO*. The two more stable of the three above mentioned peroxyl radicals can be distinguished through their reaction with MetS. Although the primary CHF(2)OCH(OO*)CF(3) oxidizes MetS to MetSO in a 2-e step, the majority of the secondarily formed CHF(2)OC(O)CF(2)OO* reacts with MetS via a 1-e transfer mechanism, yielding CHF(2)OC(O)CF(2)OO-, which eventually suffers a total breakup into CHF(2)O- + CO(2) + CF(2)O. Quantum-chemical calculations show that this reaction is highly exothermic (DeltaH = -81 kcal/mol). In air-saturated solution this pathway accounts for about 35% of the overall isoflurane degradation. Minor products (10% each), namely, oxalic acid and carbon monoxide originate from oxyl radicals, CHF(2)OC(O)CF(2)O* and CHF(2)OCH(O*)CF(3). An isoflurane-derived hydroperoxide CHF(2)OCH(OOH)CF(3) in high yield was generated in radiolysis of air-saturated solutions containing isoflurane and formate either via a H-atom abstraction from formate by the isoflurane-derived peroxyl radicals or by their cross-termination reaction with superoxide O(2)*-. CHF(2)OCH(OOH)CF(3), is an unstable intermediate whose multistep hydrolysis is giving H(2)O(2) + 2HF + HC(O)OH + CF(3)CH(OH)(2). In the absence of MetS, about 55% of CHF(2)OCH(OO*)CF(3) undergo termination via the Russell mechanism and 27% are involved in cross-termination with superoxide (O(2)*-) and peroxyl radicals derived from t-BuOH (used to scavenge *OH radicals). The remaining 18% of the primary peroxyl radicals undergo termination via formation of alkoxyl radicals, CHF(2)OCH(O*)CF(3).  相似文献   

14.
The oxidation of gaseous propane under gamma radiolysis was studied at 100 torr pressure and 25°C, at oxygen pressures from 1 to 15 torr. Major oxygen-containing products and their G-values with 10% added oxygen are as follows: acetone, 0.98; i-propyl alcohol, 0.86; propionaldehyde, 0.43; n-propyl alcohol, 0.11; acrolein, 0.14; and allyl alcohol, 0.038. Minor products include i-butyl alcohol, t-amyl alcohol, n-butyl alcohol, n-amyl alcohol, and i-amyl alcohol. Small yields of i-hexyl alcohol and n-hexyl alcohol were also observed. There was no apparent difference in the G-values at pressures of 50, 100 and 150 torr. When the oxygen concentration was decreased below 5%, the yields of acetone, i-propyl alcohol, and n-propyl alcohol increased, the propionaldehyde yield decreased, and the yields of other products remained constant. The formation of major oxygen-containing products was explained on the basis that the alkyl radicals combine with molecular oxygen to give peroxyl radicals; the peroxyl radicals react with one another to give alkoxyl radicals, which in turn react with one another to form carbonyl compounds and alcohols. The reaction scheme for the formation of major products was examined using computer modeling based on a mechanism involving 28 reactions. Yields could be brought into agreement with the data within experimental error in nearly all cases.  相似文献   

15.

The antioxidant activity of aromatic nitroxides in the oxidation of styrene was studied using a complex of kinetic methods in combination with quantum chemical calculations and kinetic modeling. During oxidation of styrene and its saturated analog, ethylbenzene, aromatic nitroxides terminate oxidation chains via the reaction with both alkyl and peroxyl radicals. The mechanism of the process was proposed, which explains multiple chain termination by the interaction of peroxyl and nitroxide radicals revealed in the investigation of styrene oxidation.

  相似文献   

16.
The preparation of two highly sensitive fluorogenic α-tocopherol (TOH) analogues which undergo >30-fold fluorescence intensity enhancement upon reaction with peroxyl radicals is reported. The probes consist of a chromanol moiety coupled to the meso position of a BODIPY fluorophore, where the use of a methylene linker (BODIPY-2,2,5,7,8-pentamethyl-6-hydroxy-chroman adduct, H(2)B-PMHC) vs an ester linker (meso-methanoyl BODIPY-6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid, H(2)B-TOH) enables tuning their reactivity toward H-atom abstraction by peroxyl radicals. The development of a high-throughput fluorescence assay for monitoring kinetics of peroxyl radical reactions in liposomes is subsequently described where the evolution of the fluorescence intensity over time provides a rapid, facile method to conduct competitive kinetic studies in the presence of TOH and its analogues. A quantitative treatment is formulated for the temporal evolution of the intensity in terms of relative rate constants of H-atom abstraction (k(inh)) from the various tocopherol analogues. Combined, the new probes, the fluorescence assay, and the data analysis provide a new method to obtain, in a rapid, parallel format, relative antioxidant activities in phospholipid membranes. The method is exemplified with four chromanol-based antioxidant compounds differing in their aliphatic tails (TOH, PMHC, H(2)B-PMHC, and H(2)B-TOH). Studies were conducted in six different liposome solutions prepared from poly- and mono-unsaturated and saturated (fluid vs gel phase) lipids in the presence of either hydrophilic or lipophilic peroxyl radicals. A number of key insights into the chemistry of the TOH antioxidants in lipid membranes are provided: (1) The relative antioxidant activities of chromanols in homogeneous solution, arising from their inherent chemical reactivity, readily translate to the microheterogeneous environment at the water/lipid interface; thus similar values for k(inh)(H(2)B-PMHC)/k(inh)(H(2)B-TOH) in the range of 2-3 are recorded both in homogeneous solution and in liposome suspensions with hydrophilic or lipophilic peroxyl radicals. (2) The relative antioxidant activity between tocopherol analogues with the same inherent chemical reactivity but bearing short (PMHC) or long (TOH) aliphatic tails, k(inh)(PMHC)/k(inh)(TOH), is ~8 in the presence of hydrophilic peroxyl radicals, regardless of the nature of the lipid membrane into which they are embedded. (3) Antioxidants embedded in saturated lipids do not efficiently scavenge hydrophilic peroxyl radicals; under these conditions wastage reactions among peroxyl radicals become important, and this translates into larger times for antioxidant consumption. (4) Lipophilic peroxyl radicals show reduced discrimination between antioxidants bearing long and short aliphatic tails, with k(inh)(PMHC)/k(inh)(TOH) in the range of 3-4 for most lipid membranes. (5) Lipophilic peroxyl radicals are scavenged with the same efficiency by all four antioxidants studied, regardless of the nature of their aliphatic tail or the lipid membrane into which they are embedded. These data underpin the key role the lipid environment plays in modulating the rate of reaction of antioxidants characterized by similar inherent chemical reactivity (arising from a conserved chromanol moiety) but differing in their membrane mobility (structural differences in the lipophilic tail). Altogether, a novel, facile method of study, new insights, and a quantitative understanding on the critical role of lipid diversity in modulating antioxidant activity in the lipid milieu are reported.  相似文献   

17.
The activation energy and rate constant of the reaction between the nitroxyl radical and N-alkoxyamine as a concerted abstraction–fragmentation reaction have been calculated using the intersecting parabolas model. This reaction proceeds fairly rapidly and leads to nitroxyl radical autoregeneration as a result of the following consecutive reactions:AmO? + AmOR → AmOH + >C=O + Am?, RO 2 ? + AmOH → ROOH + AmO?, Am?+ O2 → Am 2 ? , and 2AmO 2 ? → 2AmO? + O2. Thus, the nitroxyl radical is an effective radical catalyst for its own regeneration from N-alkoxyamine. The rates of regeneration of the nitroxyl radical from its N-alkoxyamine under the action of alkyl, alkoxyl, peroxyl, nitroxyl, and hydroperoxyl radicals under conditions of polypropylene oxidation inhibited by the nitroxyl radical are compared. It is demonstrated that only peroxyl, hydroperoxyl, and nitroxyl radicals are involved in AmO? regeneration from AmOR.  相似文献   

18.
Catechins, one of the class of flavonoids, are known as very efficient antioxidants. Here we investigated the kinetics of the reactions of three catechins, namely, catechin, epigallocatechin, and epigallocatechin gallate (EGCG) with some oxidants, which are formed in vivo under oxidative stress, hypochlorite, peroxynitrite, and amino acid peroxyl radicals. Stopped-flow spectrophotometry and pulse radiolysis technique with absorption detection were used to observe the formation of intermediate products of oxidized catechins. We found that catechins react with hypochlorite with the rate constant of the order of 105–106 M−1 s−1 at pH 7.4. Experimental kinetic traces of the reaction of EGCG with valine peroxyl radicals were fitted using chemical simulation, and the rate constant of this reaction was found to be 5 × 105 M−1 s−1. The rate constants of the formation of unstable catechin quinones in the reaction with peroxynitrite were comparable to that of spontaneous peroxynitrite isomerization, which indicates that catechins are oxidized indirectly by peroxynitrite. Biological consequences of these reactions are discussed.  相似文献   

19.
The antioxidative action of mixtures of phenols, phosphites, HALS, a) and some of their transformation products in various compositions has been studied in the thermo- and photo-oxidation of hydrocarbons and polypropylene under different conditions. In the AIBN-initiated oxidation of hydrocarbons at low temperatures (< 80°C), hindered phenols, hindered aryl phosphites and the nitroxyl derivatives of HALS act antioxidatively when used individually in appropriate concentrations. Secondary HALS do not show any induction period, but a certain retardation of the oxidation process after some reaction time. The inhibiting efficiency of nitroxyls observed cannot be explained completely by the currently accepted action mechanisms of HALS, but is also related to the reaction of the nitroxyls with alkylperoxyl radicals. In mixtures with hindered phenols, HALS have almost no influence on the rate of thermooxidation at low temperatures. Their nitroxyl derivatives, however, always exhibit synergism, most pronounced when both stabilizers are used in equimolar ratios. During the photooxidation phenols lower the efficiency of HALS. The influence of mixtures of stabilizers on the oxidative stability of polypropylene is rather different and depends on the oxidation conditions, the structure, the concentration and the ratio of the stabilizers. Synergistic as well as antagonistic effects are observed. Both aliphatic and aromatic phosphites studied act synergistically when used together and with phenols. This demonstrates that for acting as synergist for phenols, the hydrogen peroxide decomposing capability of the phosphites, but not their chain breaking activity is important. HALS-phosphites and phosphonites, containing amine and phosphorus units in one molecule, are highly effective inhibitors of photo- and thermooxidation and exhibit lower critical antioxidant concentrations and longer induction periods than phosphites alone. They even exceed the efficiency of phenols in many cases. Transformation products of phenolic antioxidants investigated act differently and in many cases contrarily under photo- and thermooxidative conditions. Therefore, they influence the efficiency of stabilizer mixtures also in a different way.  相似文献   

20.
We have undertaken a detailed study of the antioxidant activity of allicin, one of the main thiosulfinates in garlic, in order to obtain quantitative information on it as a chain-breaking antioxidant. The antioxidant actions of allicin against the oxidation of cumene and methyl linoleate (ML) in chlorobenzene were studied in detail using HPLC. The hydroperoxides formed during the course of the inhibited oxidation of ML were analyzed as their corresponding alcohols by HPLC, and it is apparent that an allylic hydrogen atom of the allicin is responsible for the antioxidant activity. Furthermore, it is clear that the radical-scavenging reactions of allicin proceed via a one-step hydrogen atom transfer based on the results of the reaction with 2,2-diphenyl-1-picrylhydrazyl (DPPH) in the presence of Mg2+ and calculation of the ionization potential value. In addition, we determined the stoichiometric factor (n), the number of peroxyl radicals trapped by one antioxidant molecule, of allicin by measuring the reactivity toward DPPH in chlorobenzene, and the value of n for allicin was about 1.0. Therefore, we measured the rate constants, k(inh), for the reaction of allicin with peroxyl radicals during the induction period of the cumene and the ML oxidation. As a result, we found that allicin reacts with peroxyl radicals derived from cumene and ML with the rate constants k(inh) = 2.6 x 10(3) M(-1)s(-1) and 1.6 x 10(5) M(-1)s(-1) in chlorobenzene, respectively. Our results demonstrate for the first time reliable quantitative kinetic data and the antioxidative mechanism of allicin as an antioxidant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号