首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
朱德喜  甄红宇  叶辉  刘旭 《物理学报》2009,58(1):596-601
研究了利用摩擦空穴注入层3,4-乙撑二氧噻吩:聚苯乙烯磺酸(PEDOT:PSS)作为定向层实现聚芴(PFO)薄膜的偏振电致发光,蓝光的色坐标为(0.20,0.21).从聚合物薄膜的紫外可见吸收和光致发光偏振特性,研究了不同定向层摩擦强度、退火温度以及退火时间下PFO薄膜的二向色性,并证明退火温度是决定器件偏振性能的关键因素.当摩擦强度为25 mm退火温度和时间分别为200℃和30 min时,得到较好的偏振性能,器件的电致发光偏振率约为3. 关键词: 偏振发光 摩擦定向 聚合物电致发光 空穴注入层  相似文献   

2.
采用有机小分子TBPe(2,5,8,11-tetratertbutylperylene)以不同比例掺入MEH-PPV(poly )作为发光层,研究了TBPe不同掺杂比例对器件性能的影响,进而对发光强度进行优化。对于所制备的ITO/PEDOT:PSS/MEH-PPV/TBPe/Al有机电致发光器件,TBPe的最优蒸镀厚度为0.5 nm,其发光强度相对于标准器件提高了325%。ITO/PEDOT:PSS/MEH-PPV:TBPe/TBPe/Liq/Al有机电致发光器件的最优掺杂比例为MEH-PPV:TBPe=100:30(质量比),其发光亮度相比于未掺杂器件提高了44%。在上述器件的基础上增加Alq3层提高电子注入,分别制作了Liq和LiF作为修饰层的ITO/PEDOT:PSS/MEH-PPV:TBPe/TBPe/Alq3/Liq/Al和ITO/PEDOT:PSS/MEH-PPV:TBPe/TBPe/Alq3/LiF/Al多层器件,发光亮度分别达到4 162 cd/m2和4 701 cd/m2。所有器件的电致发光波长均为580 nm,为MEH-PPV的发光,TBPe的掺杂对MEH-PPV的发光起到了增强作用。  相似文献   

3.
石墨烯具有独特的电学性能、优异的机械延展性和良好的化学稳定性,是制备高性能导电薄膜的理想材料,但是当前石墨烯的高电阻率限制了它的实际应用。本文采用喷涂方法制备了石墨烯/聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)(PEDOT:PSS)复合导电薄膜,对复合薄膜的表面形貌与光电性能进行了研究。PEDOT:PSS的引入不仅降低了石墨烯薄膜的表面电阻,同时还平滑了薄膜表面。在此基础上,成功制备了柔性黄光有机电致发光器件,器件在12 V时达到效率最大值0.9 cd/A。器件在曲率半径为10 mm时弯曲了100次后,发光亮度并无明显变化。该复合薄膜可实际应用于柔性有机电致发光显示器件。  相似文献   

4.
对溶液化发光层成膜参数及电子传输层浓度进行调控,优化发光层成膜效果及器件发光性能,同时使用导电聚合物聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸(PEDOT:PSS)作为透明阳极,刮涂导电银浆作为阴极,通过全溶液法制备了高效率的OLED。研究发现,发光层成膜参数的调整有效改善了其成膜效果。且适当的电子传输层材料浓度可以改善器件的载流子注入平衡,有效降低阴极的功函数,提高器件的发光性能;酸后处理的PEDOT:PSS薄膜导电性大大提升,在可见光范围的透过率与ITO相当。全溶液制备的发光器件最大电流效率为1.441 cd/A,与以ITO为电极的器件相比,增加了近50倍。  相似文献   

5.
采用有机小分子TBPe(2,5,8,11-tetratertbutylperylene)以不同比例掺入MEH-PPV(poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene])作为发光层,研究了TBPe不同掺杂比例对器件性能的影响,进而对发光强度进行优化。对于所制备的ITO/PEDOT∶PSS/MEH-PPV/TBPe/Al有机电致发光器件,TBPe的最优蒸镀厚度为0.5 nm,其发光强度相对于标准器件提高了325%。ITO/PEDOT∶PSS/MEH-PPV∶TBPe/TBPe/Liq/Al有机电致发光器件的最优掺杂比例为MEH-PPV∶TBPe=100∶30(质量比),其发光亮度相比于未掺杂器件提高了44%。在上述器件的基础上增加Alq3层提高电子注入,分别制作了Liq和LiF作为修饰层的ITO/PEDOT∶PSS/MEH-PPV∶TBPe/TBPe/Alq3/Liq/Al和ITO/PEDOT∶PSS/MEH-PPV∶TBPe/TBPe/Alq3/LiF/Al多层器件,发光亮度分别达到4 162 cd/m2和4 701 cd/m2。所有器件的电致发光波长均为580 nm,为MEH-PPV的发光,TBPe的掺杂对MEH-PPV的发光起到了增强作用。  相似文献   

6.
樊凡  梁春军  何志群 《发光学报》2014,35(3):337-341
使用全溶液法制备聚合物白光器件,通过引入修饰层并改变各层薄膜厚度来优化器件性能。针对ITO 阴极功函数较高的问题,引入功函数较低的蓝光聚芴衍生物:聚[9,9-二辛基芴-9,9-双(N,N-二甲基胺丙基)芴](PFN),有效地降低了阴极的复合功函数。同时PFN也是电子注入材料和发光材料。为降低器件的启动电压,引入Cs2CO3作为修饰层,同时也提高了电子传输能力。使用MEH-PPV作为橙红光材料。使用二次溶剂掺杂获得的高导PEDOT:PSS聚合物并通过滴膜的方法制备阳极取代了传统的金属电极真空镀膜法,从而使器件制备简单、快捷。最终得到了湿法制作的聚合物白光器件的光谱范围为400~800 nm,涵盖了整个可见光区域。器件的启亮电压为4 V,亮度为1 500 cd/m2,电流效率为0.55 cd/A。  相似文献   

7.
全湿法制备聚合物电致发光器件   总被引:1,自引:1,他引:0       下载免费PDF全文
利用全溶液方法制备了聚合物电致发光器件并研究了器件的性能。器件的所有膜层,包括发光层和上电极层均采用溶液湿法获得,完全摒弃了真空蒸镀工艺。利用二次溶剂掺杂获得的PEDOT∶PSS聚合物薄膜的电导率达到608.7 S/cm。在240 nm的厚度时,聚合物电极膜层的面电阻约为68 Ω/□; 当膜层厚度为1 μm时,薄膜的面电阻可低于16 Ω/□。采用溶液滴涂方法制备的高电导PEDOT∶PSS聚合物薄膜作为上电极替代通常所用的铝电极,所制备的聚合物发光器件的开启电压约为4 V。  相似文献   

8.
聚合物级联发光器件   总被引:1,自引:0,他引:1  
基于溶液加工方法制备了聚乙撑二氧噻吩-聚(苯乙烯磺酸盐)(PEDOT∶PSS)/氧化锌(ZnO)/乙氧基化聚乙烯亚胺(PEIE)电荷产生层的聚合物级联发光器件, 发现PEDOT∶PSS层电导和厚度对器件的电流-电压特性影响较小, 不同PEDOT∶PSS对器件发光效率的影响主要来自于其对发光层激子不同的猝灭作用, PEDOT∶PSS厚度为60 nm的级联器件比PEDOT∶PSS 厚度为30 nm的级联器件的发光效率稍高, 原因是PEDOT∶PSS较厚时, 其表面形貌更均匀。级联器件的发光效率和驱动电压分别与发光子单元的发光效率和驱动电压之和相近, 说明在较低的电压下电荷产生层就能够有效产生电荷并注入到发光子单元中,级联器件的发光光谱中包含两个发光子单元的发光光谱,说明两个发光子单元在级联器件中都能正常工作。通过对电荷产生层的电容-电压(C-V)特性的测试, 确认了在电荷产生层中存在电荷的积累过程。证明了PEDOT∶PSS/ZnO/PEIE为有效的电荷产生层。首次报道了包含三个SY-PPV发光单元的级联器件, 三个发光子单元发光效率之和与级联器件的发光效率相当, 其最大发光效率和最大外量子效率分别为21.7 cd·A-1和6.95%。在器件亮度为5 000 cd·m-2时, 器件的发光效率和外量子效率分别为20.5 cd·A-1和6.6%。说明并没有由于发光子单元数目增加而影响级联器件的发光效率。并且其发光光谱和发光子单元的发光光谱相接近。通过 进一步降低CGL中空穴注入层对级联器件的影响有望提高级联器件的发光效率。  相似文献   

9.
以紫外臭氧处理超薄Ag复合MoO3或PEDOT:PSS修饰ITO电极的高效柔性有机太阳能电池。通过优化紫外臭氧处理Ag薄膜的时间,提高了以P3HT:PCBM为有源层的器件的功率转换效率,从1.68%(未经过紫外臭氧处理)提高到2.57%(紫外臭氧处理Ag 1 min)。提高的原因推测是紫外臭氧处理形成了AgOx薄膜,提高了电荷提取并使器件具有高光学透明度、低串联电阻和优异的表面功函数等一些性能。并且,紫外臭氧处理Ag薄膜与MoO3或者PEDOT:PSS复合修饰ITO的器件效率分别得到提高,Ag薄膜与MoO3复合修饰ITO的器件效率从2.02%(PET/ITO/MoO3)提高到2.97%(PET/ITO/AgOx/MoO3),Ag薄膜与PEDOT:PSS复合修饰ITO的器件效率从2.01%(PET/ITO/PEDOT:PSS)提高到2.93%(PET/ITO/AgOx/PEDOT:PSS)。此外,以PBDTTT-EFT:PC71BM为有源层的柔性聚合物太阳能电池效率可达6.21%。基于ITO的柔性光电器件效率的提高主要归于ITO被Ag/PEDOT:PSS或Ag/MoO3修饰后功函数的提高。  相似文献   

10.
使用PCDTBT作为发光层材料,制备了发光波长为705 nm的红色有机电致发光器件,其结构为ITO/PEDOT:PSS/PCDTBT/BCP/LiF/Al.器件启亮电压为2 V,在9 V时器件达到最高亮度,为29000 cd/m2,最大电流效率为3.5 cd/A.还研究了不同退火温度对器件发光性能的影响.实验结果表明,退火温度为50?C时器件的性能最佳,其原因是此时既有利于溶剂挥发,又保持了分子结构的稳定性,而高温退火降低了PCDTBT的π-π堆积的有序性,从而使得器件性能下降.  相似文献   

11.
We demonstrate a high eftlciency top-emitting polymer light-emitting diode (TPLED) with chromium (Cr) taking as the anode. The TPLED structure is Cr/poly-3, 4-ethylenedioxythiophene (PEDOT:PSS)/poly [2-(4-3',7'- dimethyloctyloxy)-phenyl]-p-phenylenevinylene) (P-PP V) /Ba/Ag. The Cr ( 100 nm) anode is prepared by sputterdepositing in a vacuum chamber. It is found that the device emissive properties are affected dramatically by the thickness of both PEDOT:PSS and the Ag cathode. Optimized thicknesses of PEDOT:PSS and Ag layer are 60nm and 15nm, respectively. The diode exhibits excellent electroluminescence (EL) properties, such as a turn-on voltage of 3.32 V, luminous eftlciency of 4.41 cd/A and luminance of 6989cd/m^2 at driving voltage of about 9 V.  相似文献   

12.
We report an increase of electroluminescence (EL) efficiency by about two times for poly(2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylene vinylene) (MEH-PPV) based polymer light-emitting diodes (PLED) while employing an ultrathin layer of poly(methyl methacrylate) (PMMA) between a hole injection layer, polyethylenedioxythiophenne:polystyrenesulfonate (PEDOT:PSS) and an emitting layer, MEH-PPV. The peak power efficiency of the control device (ITO/MEH-PPV/LiF/Al) was 0.42 lm/W with a current efficiency of 0.66 cd/A. The device with the optimized thickness of PMMA interface layer shows the highest power efficiency of 1.15 lm/W at a current efficiency exceeding 1.83 cd/A. The significant improvement in the device performance is attributed to the decrease of holes injection and the promotion of electrons injection, which cause the balance of the carriers within the emitting layer.  相似文献   

13.
Poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) was modified by different concentrations of multi-wall carbon nanotubes (MWNTs), and the nanocomposites of PEDOT:PSS and MWNTs were firstly used as hole-injection layer in fabrication of organic light-emitting devices (OLEDs) by using a double-layer structure with hole-injection layer of doped PEDOT:PSS and emitting/electron transport layer of tris(8-hydroxyquinolinato) aluminum (Alq3). PEDOT:PSS solution doped with MWNTs was spin-coated on clean polyethylene terephthalate (PET) substrate with indium tin oxide (ITO). It was found that the electroluminescence (EL) intensity of the OLEDs were greatly improved by using PEDOT:PSS doped with MWNTs as hole-injection layer which might have resulted from the hole-injection ability improvement of the nanocomposites. Higher luminescence intensity and lower turn-on voltage were obtained by these devices and the luminance intensity obtained from the device with the hole-injection layer of PEDOT:PSS doped by 0.4 wt.% MWNTs was almost threefolds of that without doping.  相似文献   

14.
To investigate the inter-molecular energy transfer between polysilane and dye dopants, poly(methylphenylsilane)(PMPS) was used as a host material and perylene as the blue dopant. The structure of the devices is indium–tin oxide (ITO)/PEDOT:PSS(30 nm)/PMPS:perylene(dye dopant 0.1–1.0 mol%)(60 nm)/Alq3(20 nm)/LiF(0.5 nm)/Al(100 nm). Poly(3,4-ethylenedioxythiophene) (PEDOT):poly(4-styrenesulfonate) (PSS) is used as a buffer layer, tris(8-hydroxyquinoline)aluminum (Alq3) as hole transporting layer, LiF as hole injection layer. The device shows a luminance 810 cd/m2 at current density of 28 mA/cm2, luminous efficiency of 0.14 lm/W. The external quantum efficiency (EQE) is about 0.5% and EQE increased up to 0.52% by doping with single wall carbon nanotubes (SWNT) into the emissive layer. We found an efficient inter-molecular energy transfer from polysilane to dye dopants. Furthermore, using the polysilane and energy-matched dye dopants enable to fabricate the electroluminescence devices through wet processes.  相似文献   

15.
有机金属卤化钙钛矿作为发射体具有极高的色纯度和极低的成本,但钙钛矿层普遍较差的形貌制约了器件的性能.引入合适的聚合物可有效改善旋涂型钙钛矿薄膜的均匀性.本文引入聚(4-苯乙烯磺酸盐)(PSS)改性的聚(3,4-乙撑二氧噻吩):PSS(PEDOT:PSS)作为空穴注入层(HIL),结合一步旋涂制备的三溴化铅甲基胺(MAP...  相似文献   

16.
Efficient polymer white-light-emitting diodes (WPLEDs) have been fabricated with a single layer of fluorescent polymer blend. The device structure consists of ITO/PEDOT/PVK/emissive layer/Ba/Al. The emissive layer is a blend of poly(9,9-dioctylfluorene) (PFO), phenyl-substituted PPV derivative (P-PPV) and a copolymer of 9,9-dioctylfluorene and 4,7-di(4-hexylthien-2-yl)-2,1,3-benzothiadiazole (PFO-DHTBT), which, respectively, emits blue, green and red light. The emission of pure and efficient white light was implemented by tuning the blend weight ratio of PFO: P-PPV: PFO-DHTBT to 96:4:0.4. The maximum current efficiency and luminance are, respectively, 7.6 cd/A at 6.7 V and 11930 cd/m2 at 11.2 V. The CIE coordinates of white-light emission were stable with the drive voltages.  相似文献   

17.
The performance of organic light emitting device (OLED) structures, based on identically fabricated Alq3/TPD active regions, with various anode and cathode electrode structures are compared, and performance differences related to the different anode structure. The best performance was achieved with a conductive polymer, 3,4-polyethylenedioxythiopene-polystyrenesultonate (PEDOT), used as an anode layer, yielding a brightness of 1720 cd/m2 at 25 V, a turn-on voltage of 3 V, and electroluminescence (EL) efficiency and external quantum efficiency of 8.2 cd/A and 2%, respectively, at a brightness of 100 cd/m2 and 5 V. Compared to a baseline device (TPD/Alq3/Al), PEDOT anodes substantially reduce the turn-on voltage and made current injection almost linear after turn-on, whiles devices incorporating a LiF and CuPc layers significantly improved device efficiency while slightly improving turn-on voltage and maintaining superlinear I-V injection. This is attributed to the reduced barrier at the organic-organic interface in PEDOT, the ‘ladder’ effect of stepping the band offset over several interfaces, and the favorable PEDOT film morphology. The benefit of the PEDOT anode is clearly seen in the improvement in device brightness and the high external quantum efficiency obtained.  相似文献   

18.
A white organic light-emitting device was fabricated with a structure of ITO/PEDOT: PSS (45 nm)/PVK: Nile Red: [Zn4core] (75 nm)/BCP (25 nm)/Al. Without Nile Red green and with Nile Red white emission was achieved. When the concentration of the Nile Red in thin film increased from 0.01 to 0.5 wt%, a white emission achieved. The electroluminescence spectra of the device cover a wide range of visible region with two peaks around 501 and 618 nm. It is noteworthy that a white and pure white OLEDs with an incomplete energy transfer from the green host [Zn4core] to the dopant (Nile Red) was obtained in this work using a single emissive layer relative to the multi layered light emitter ones in white OLED devices. For 0.1 doped device, a maximum luminance efficiency of 2.54 cd/A with CIE coordinates of (x, y = 0.35, 0.37) at 230 mA/cm2 has was achieved.  相似文献   

19.
The light emitting behavior of the electrophosphorescent devices with solution-processible hole transport layer and light emitting layer was characterized. We have introduced the hole-transporting stacked layer composed of poly(3,4-ethylenedioxy thiophene): poly(4-styrenesulfonate) [PEDOT:PSS] and thin perfluorinated ionomer, aiming for the improvement of charge injection and transport with corresponding high efficiency behavior. In order to provide a suitable work function, composition and thickness of the ultra-thin perfluorinated ionomer was optimized for being an interfacial layer condition; 34 cd/A of green phosphorescent device was obtained while the control device without ionomer shows the luminous efficiency of 29 cd/A. Both for devices with vacuum-deposited and solution-processed electrophosphorescent emitters, change of the device efficiencies were analyzed in terms of the work function, surface chemical composition, and charge conduction behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号