首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The release properties of phenylpropanolamine hydrochloride (PPA) from ethylcellulose (EC, ethylcellulose 10 cps (EC#10) and/or 100 cps (EC#100)) matrix granules prepared by the extrusion granulation method were examined. The release process could be divided into two parts, and was well analyzed by applying square-root time law and cube root law equations, respectively. The validity of the treatments was confirmed by the fitness of the simulation curve with the measured curve. At the initial stage, PPA was released from the gel layer of swollen EC in the matrix granules. At the second stage, the drug existing below the gel layer dissolved, and was released through the gel layer. Also, the time and release ratio at the connection point of the simulation curves was examined to determine the validity of the analysis. Comparing the release properties of PPA from the two types of EC matrix granules, EC#100 showed more effective sustained release than EC#10. On the other hand, changes in the release property of the EC#10 matrix granule were relatively more clear than that of the EC#100 matrix granule. Thus, it was supposed that EC#10 is more available for controlled and sustained release formulations than EC#100.  相似文献   

2.
In the pharmaceutical preparation of a controlled release drug, it is very important and necessary to understand the release properties. In previous papers, a combination of the square-root time law and cube-root law equations was confirmed to be a useful equation for qualitative treatment. It was also confirmed that the combination equation could analyze the release properties of layered granules as well as matrix granules. The drug release property from layered granules is different from that of matrix granules. A time lag occurs before release, and the entire release property of layered granules was analyzed using the combination of the square-root time law and cube-root law equations. It is considered that the analysis method is very useful and efficient for both matrix and layered granules. Comparing the granulation methods, it is easier to control the manufacturing process by tumbling granulation (method B) than by tumbling-fluidized bed granulation (method C). Ethylcellulose (EC) layered granulation by a fluidized bed granulator might be convenient for the preparation of controlled release dosage forms as compared with a tumbling granulator, because the layered granules prepared by the fluidized bed granulator can granulate and dry at the same time. The time required for drying by the fluidized bed granulator is shorter than that by the tumbling granulator, so the fluidized bed granulator is convenient for preparation of granules in handling and shorter processing time than the tumbling granulator. It was also suggested that the EC layered granules prepared by the fluidized bed granulator were suitable for a controlled release system as well as the EC matrix granules.  相似文献   

3.
In the pharmaceutical preparation of a controlled release drug, it is very important and necessary to understand the entire release properties. As the first step, the dissolution test under various conditions is selected for the in vitro test, and usually the results are analyzed following Drug Approval and Licensing Procedures. In this test, 3 time points for each release ratio, such as 0.2-0.4, 0.4-0.6, and over 0.7, respectively, should be selected in advance. These are analyzed as to whether their values are inside or outside the prescribed aims at each time point. This method is very simple and useful but the details of the release properties can not be clarified or confirmed. The validity of the dissolution test in analysis using a combination of the square-root time law and cube-root law equations to understand all the drug release properties was confirmed by comparing the simulated value with that measured in the previous papers. Dissolution tests under various conditions affecting drug release properties in the human body were then examined, and the results were analyzed by both methods to identify their strengths and weaknesses. Hereafter, the control of pharmaceutical preparation, the manufacturing process, and understanding the drug release properties will be more efficient. It is considered that analysis using the combination of the square-root time law and cube-root law equations is very useful and efficient. The accuracy of predicting drug release properties in the human body was improved and clarified.  相似文献   

4.
In the pharmaceutical preparation of a controlled release drug, it is very important and necessary to understand the release properties. The dissolution test is a very important and useful method for understanding and predicting drug-release properties. It was readily confirmed in the previous paper that the release process could be assessed quantitatively by a combination of the square-root time law and cube-root law equations for ethylcellulose (EC) matrix granules of phenylpropanolamine hydrochloride (PPA). In this paper EC layered granules were used in addition to EC matrix. The relationship between release property and the concentration of PPA in plasma after administration using beagle dogs were examined. Then it was confirmed that the correlativity for EC layered granules and EC matrix were similar each other. Therefore, it was considered that the dissolution test is useful for prediction of changes in concentration of PPA in the blood with time. And it was suggested that EC layered granules were suitable as a controlled release system as well as EC matrix.  相似文献   

5.
The purpose of this study was to develop a new sustained-release phenylpropanolamine hydrochloride (PPA) bilayer caplets that consists of an immediate-release portion and a prolonged-release portion containing a hydroxypropylmethylcellulose 2208 (HPMC2208) matrix. Since PPA is a highly water-soluble drug, incorporation of 60% HPMC2208 level in the matrix was required for giving the product a PPA-slow releasing property. Difference in the viscosity grade of HPMC2208 in the matrices did not greatly influence the PPA dissolution characteristics from the matrices. Therefore, we formulated the prolonged-release portion consisting of 10% PPA, 30% excipients, and 60% HPMC2208 (Metolose 90SH4000) into the sustained-release PPA bilayer caplets. The PPA dissolution characteristics from the formulated bilayer caplets showed the prolonged dissolution profile after rapid dissolution and was close to the targeted profile calculated from PPA pharmacokinetics study. The manufacturing methods of the prolonged-release portion and the filling order of the prolonged-release portion in bilayer compression did not significantly affect the PPA dissolution characteristics from the bilayer caplets. The PPA dissolution characteristics from the bilayer caplets was pH independent. Moreover, the PPA dissolution characteristics from the bilayer caplets was not affected by mechanical shear. The sustained-release PPA bilayer caplets is expected to present constant prolonged-release of PPA after rapid dissolution in vivo without dissolution change due to pH and mechanical shear.  相似文献   

6.
Analysis of the entire release process of the wax matrix tablet was examined. Wax matrix tablet was prepared from a physical mixture of drug and wax powder to obtain basic or clear release properties. The release process began to deviate from Higuchi equation when the released amount reached at around the half of the initial drug amount. Simulated release amount increase infinitely when the Higuchi equation was applied. Then, the Higuchi equation was modified to estimate the release process of the wax matrix tablet. The modified Higuchi equation was named as the H-my equation. Release process was well treated by the H-my equation. Release process simulated by the H-my equation fitted well with the measured entire release process. Also, release properties from and through wax matrix well coincident each other. Furthermore, it is possible to predict an optional release process when the amount of matrix and composition of matrix system were defined.  相似文献   

7.
The purpose of this study was to establish the manufacturing method of the formulated bilayer caplets containing the hydroxypropylmethylcellulose 2208 (HPMC2208) matrix without lamination. In manufacturing the bilayer caplets containing the HPMC2208 (Metolose 90SH4000) matrix, some bilayer caplets were cracked. We found that cracking of bilayer caplets is not the separation of two layers, but lamination of the prolonged-release layer. It was assumed that Metolose 90SH4000 causes lamination of the prolonged-release layer. Two factors, roller compaction pressure on dry granulation of the prolonged-release layer and filling order of the prolonged-release layer in bilayer compression, were related to lamination of bilayer caplets. The compactibility of the prolonged-release layer decrease with an increase in roller compaction pressure on dry granulation. The compactibility of the prolonged-release layer manufactured by direct compression is superior to that manufactured by dry granulation. The compactibility of the prolonged-release layer in the shape of the second layer, convexo-concave, is superior to that in the shape of the first layer, convexo-convex. This is due to the fact that the density distribution inside the compact in the shape of convexo-concave was more uniform than that in the shape of convexo-convex. The manufacturing method of the formulated bilayer caplets having the prolonged-release layer whose Metolose 90SH4000 content is 60% without lamination is as follows: the prolonged-release layer manufactured by direct compression is fed as the second layer in bilayer compression.  相似文献   

8.
In order to examine basic properties of release from and through wax matrix layer, reservoir device matrix tablet was prepared from a physical mixture of hydrogenated caster oil and drug that was the same one in the reservoir. Release process could be divided into two stages. The first stage was the formation process of water channel by dissolving the drug in the wax matrix layer, and dissolved drug was released from the matrix layer following the square-root-of-time law equation. Hence, the drug penetration coefficient and tortuosity in the matrix layer were estimated. The second stage was the zero order release process of drug in the reservoir through the wax matrix layer. The release rate constant was calculated from the slope of line. Hence, the drug permeability coefficient and tortuosity were estimated. Fundamentally, tortuosity can not be expressed by some meaningful factors, and is obtained as an experimental result. By preparing wax matrix system from a physical mixture other than melted granule method, it was suggested that the matrix structure was uniform three-dimensionally. As a result, tortuosity could be expressed by a function of porosity, because unrecognized factors such as the surface coverage and thickness of melted wax on the soluble component should not be involved.  相似文献   

9.
Generalization of the release process through the wax matrix layer was examined by use of a reservoir device tablet. The wax matrix layer of the reservoir device tablet was prepared from a physical mixture of lactose and hydrogenated castor oil to simplify the release properties. Release through the wax matrix layer showed zero-order kinetics in a steady state after a given lag time, and could be divided into two stages. The first stage was the formation process of water channel by dissolving the soluble component in the wax matrix layer. The lag time obtained by applying the square root law equation was well connected with the amount of the matrix layer and mixed weight ratio of components in this layer. The second stage was the zero-order release process of drug in the reservoir through the wax matrix layer, because the effective surface area was fixed. The release rate constants were connected with thickness of the matrix layer and permeability coefficient, and the permeability coefficients were connected with the diffusion coefficient of drug and porosity. Hence the release rate constant could be connected with the amount of matrix layer and the mixed weight ratio of components in the matrix layer. It was therefore suggested that the release process could be generalized using the amount of matrix layer and the mixed weight ratio of components in the matrix layer.  相似文献   

10.
Release properties from a wax matrix tablet was examined. To obtain basic release properties, the wax matrix tablet was prepared from a physical mixture of drug and wax powder (hydrogenated caster oil) at a fixed mixing ratio. Properties of release from the single flat-faced surface or curved side surface of the wax matrix tablet were examined. The applicability of the square-root time law and of Higuchi equations was confirmed. The release rate constant obtained as g/min(1/2) changed with the release direction. However, the release rate constant obtained as g/cm2 x min(1/2) was almost the same. Hence it was suggested that the release property was almost the same and the wax matrix structure was uniform independent of release surface or direction at a fixed mixing ratio. However, these equations could not explain the entire release process. The applicability of a semilogarithmic equation was not as good compared with the square-root time law or Higuchi equation. However, it was revealed that the semilogarithmic equation was available to simulate the entire release process, even though the fit was somewhat poor. Hence it was suggested that the semilogarithmic equation was sufficient to describe the release process. The release rate constant was varied with release direction. However, these release rate constants were expressed by a function of the effective surface area and initial amount, independent of the release direction.  相似文献   

11.
There has been growing interest in the subject of drug delivery and the design and evaluation of controlled-release systems. The simplest way to control the release of an active agent is to disperse it in an inert polymeric matrix. Controlled-release systems are of interest because they are technologically simple, relatively cheap, and practically unaffected by physiological changes. In this study, a new matrix system was formed by an active principle, metoclopramide hydrochloride, scattered into a biocompatible hydrophobic polymerical mesh, polyamide 12, to achieve sustained and controlled delivery of metoclopramide hydrochloride. This research was conducted to investigate the in vitro drug release behavior from these new inert polymeric matrix tablets. The drug release process was investigated both experimentally and by means of mathematical models. Different models were applied for the evaluation of drug release data. On the basis of our results, a biexponential equation was proposed, Q=Qfast(1)(1 - e(-Kfast t)) + Qslow(2)(1 - e(-Kslow t)), in an attempt to explain the mechanism responsible for the release process. Additionally, the influence of the experimental conditions of the dissolution devices, such as rate of flow and pH of dissolution medium, on the parameters that characterize the release mechanism was studied, and it was found that the main factor was the hydrodynamic condition of rate of flow.  相似文献   

12.
Release property of reservoir device matrix tablet was examined. Wax matrix layer was prepared from physical mixture of lactose and hydrogenated castor oil to obtain basic release properties. Release process showed zero order kinetics in a steady state after a given lag times, and could be divided into two stages. The first stage was the formation process of water channel by dissolving the soluble component in the wax matrix layer. The lag time was considered to be the time required forming water channel and the time begun to release drug through the wax matrix layer at the same time. The lag time obtained by applying the square root law equation was well connected with the amount of matrix layer and mixed weight fraction of component in matrix layer. The second stage was the zero order release process of drug in the reservoir through the wax matrix layer. The release rate constants were calculated by taking into accounts of the thickness of matrix layer and permeability coefficient, and were well connected with the amount of matrix layer and mixed weight fraction of component. Also it was suggested that the tortuosity of matrix layer could be expressed by a function of the porosity defined by the mixed weight fraction.  相似文献   

13.
To obtain basic and clear release properties, wax matrix tablets were prepared from a physical mixture of drug and wax powder at a fixed mixing ratio. Properties of release from the single flat-faced surface, curved side surface, and/or whole surface of the wax matrix tablet were examined. Then tortuosity and the applicability of Higuchi's square-root time law equation were examined. The Higuchi equation well analyzed the release processes of different release manners. However, the region fitted to the Higuchi equation differed with the release manner. Tortuosity obtained with release from the single flat-faced surface and curved side surface was comparable with that obtained with the release from a reservoir device tablet, whereas tortuosity obtained with release from the whole surface was larger. As the wax matrix tablets were prepared at a fixed mixing ratio, their internal structures should be similar. Therefore changes in the matrix volume or volume fraction with release were examined, and an extra volume where dissolved drug stray becomes large with release time in the case of release from the whole surface. These factors should be taken into account for evaluation of applicability and release properties. Furthermore, the entire release process should be analyzed using a combination of the square-root time law and other suitable equations in accordance with release manner or condition.  相似文献   

14.
The purpose of the present work was the study of the gentamicin sulphate (GS) release from a commercial acrylic bone cement CMW-1 with the aims of establishing the influence of the slabs preparation as well as the release mechanism and kinetics. The effect of the amount of GS on the release kinetic parameters has been also investigated. In vitro release studies were performed in a buffered saline solution at pH 7.4 and 37 degrees C. The GS concentration was determined using an indirect spectrophotometric method with an o-phthaldialdehyde as a derivatizing reagent. A commercial and three modified samples were tested. The free and fractured surfaces of the GS cement slabs before and after the release studies were observed by means of scanning electron microscopy (SEM). For low GS concentration loading the release was very incomplete because most of the GS beads were encapsulated by the hydrophobic PMMA matrix. A higher amount of antibiotic was released from cement that has a higher amount incorporated. A model and therefore a mechanism of release based on this model have been proposed. It has allowed us to explain the changes in dissolution kinetics of an acrylic matrix type controlled release system up to 12% GS loading. The cumulative amount of GS released M(t)/M(i), was fitted as a function of time. For lower amounts of GS, the regression analysis (R(2)>0.99) revealed that the release is most adequately represented by M(t)/M(i)=b+kt(n), where b represents a burst effect. The goodness of fit decreases as the amount of GS increases. The influence of some other type of release mechanism for higher amounts of GS must be taken into account and a second model for the release, M(t)/M(i)=b+k x [1-exp(-kt)], is proposed.  相似文献   

15.
A solution to Fick's equation is presented which accurately predicts the transfer of mass out of a polymeric rod or sheet undergoing relaxation by a solvent permeating it by Case II transport. There is a critical length. Before the solvent permeates to this length the diffusible material can diffuse away from the moving boundary faster than it is becoming available at the boundary. Afterward the reverse is true. Five sets of experimental data from three different sources have been used to test the model. The agreement is excellent.  相似文献   

16.
17.
A polymeric system capable of delivering 5-fluorouracil (5-FU) at increased rates on demand by external microwave irradiation was developed. Sustained-release systems were made by incorporating 5-FU into an ethylene-vinyl alcohol copolymer. When exposed to release medium, the delivery systems released the drug slowly and continuously. Upon exposure to microwave irradiation, the drug was released at a much higher rate. Release rates returned to base line levels when the microwave irradiation was discontinued. This study demonstrated that release rates of 5-FU from a polymer matrix can be increased at desired times by external microwave irradiation.  相似文献   

18.
The roles of the matrix and salt concentration on the formation of cluster ions during fast atom bombardment of tetraalkylammonium halide salts have been studied. The occurrence of anomalous ion intensity regions at certain cluster numbers (n) is found to depend strongly on the salt concentration in the matrix. In addition the time-dependent nature of the spectra is examined and cluster ion formation is explained by postulating that equilibrium processes occur during bombardment of the salt solution.  相似文献   

19.
The aim of this study was to apply the regular solution theory of mixed micelles to gain new insights on the drug release mechanism, when using catanionic mixtures as a method of obtaining prolonged release from gels. Synergistic effects were investigated at equilibrium and quantified in terms of regular solution theory interaction parameters. The drug release from catanionic aggregates was studied both in a polymer free environment, using dialysis membranes, and in gels, using a modified USP paddle method. The drug release kinetics was modelled theoretically by combining the regular solution theory with Fick's diffusion laws assuming a contribution to the transport only from monomeric species (stationary aggregates). The theoretical predictions were found to be in reasonably good agreement with experiments. An analysis of the calculated distribution of species between aggregated and monomeric states was shown to provide further insights into the release mechanism.  相似文献   

20.
To examine the influence of the internal structure of a wax matrix tablet on in vitro drug release, the release rates of several tablets consisting of various proportions of drug and wax were compared with the water penetration rates from the compressed and lateral surfaces of the tablets. The penetration rates from the lateral surface were found to be much faster than those from the compressed surface in all cases. A theoretical equation involving a two-dissolving-direction was derived on the basis of the boundary retreating concept. The retreating rate constants deduced from the dissolution results were well coincident with the values directly determined by the needle penetration method, suggesting good applicability of the proposed equation. The results suggest that the tortuosity of the water channels created in a tablet during dissolution is generally smaller in the horizontal direction than that in the vertical direction. This would be caused by the drug particles or granules being elongated in the horizontal direction by compression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号