首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The first-order non-linear interactions between the pipe structure and the flowing fluid are considered to formulate the governing equations of motion for the in-plane vibration of a circular-arc pipe containing flowing fluid. The forces and moments induced in a pipe element by the flowing fluid are analyzed as functions of the instantaneous local curvature of the pipe. The flow field is assumed to be one-dimensional, incompressible and of uniform flow, and to remain independent of pipe motion. For a fixed-end circular-arc pipe with arbitrary arc angle, the non-linear governing equations are solved by the method of multiple scales in conjunction with the Bubnov-Galerkin method. The non-linear solutions indicate that the vibrational behavior of the system can differ substantially from that predicted by a linear analysis.  相似文献   

2.
多孔饱和半空间上刚体垂直振动的轴对称混合边值问题   总被引:10,自引:2,他引:10  
金波  徐植信 《力学学报》1997,29(6):711-719
研究圆柱形刚体在多孔饱和半空间上的垂直振动.首先应用Hankel变换求解多孔饱和固体的动力基本方程———Biot波动方程.然后按混合边值条件建立多孔饱和半空间上刚体垂直振动的对偶积分方程,用Abel变换化对偶积分方程为第二类Fredholm积分方程.文末给出了多孔饱和半空间表面动力柔度系数的计算曲线.  相似文献   

3.
Tube bundles in cross-flow vibrate in response to motion-induced fluid-dynamic forces; hence, the resultant motions are considered to be a fluidelastic vibration. The characteristics of the vibration depend greatly on the features of the fluid-dynamic forces and the structure of the tube bundle. Therefore, in this study, the equations of motion of the tube bundle are derived. From the viewpoint of vibration, each tube is not independent of the surrounding tubes because its vibration is affected by fluid-dynamic coupling with the neighboring tubes. Thus, the equations are a set of coupled equations and the solution is obtained as an eigenvalue problem. The fluid-dynamic forces, which are indispensable in the calculation, have been obtained by experiments using a vibrating tube in the bundle; it was found that the forces depend strongly on the reduced velocity. Using these equations and the fluid forces, critical velocities of the tube bundle vibration are calculated, and it is found that the critical velocity is strongly dependent on the fluid-dynamic force characteristics, as they vary with the reduced velocity. Vibration tests of the tube bundle have also been conducted, and the critical velocities obtained in the tests are compared with the calculated values; agreement with the calculated values is good, demonstrating that the method of calculation is useful. The effects of mass ratio, frequency deviation and damping deviation of tubes in the bundle on the critical velocity are also examined theoretically. It is found that it is better to treat the mass ratio and the logarithmic decrement separately when the mass ratio is less than 10. Differences in natural frequencies make the critical velocity large. Similarly, differences in logarithmic decrement may distribute the vibration energy to other tubes and make the critical velocity large.  相似文献   

4.
本文围绕不同尺度级的输液管结构,针对液流引起的管道振动与稳定性综述了目前已有的几种物理和数学模型,详细介绍了梁模型输液管的各类振动控制方程,重点讨论了宏观尺度、微米尺度和纳米尺度下输液管振动方程的异同点。在此基础之上,进一步概述了近几年这些输液管振动与稳定性问题研究的现状和一些重要研究结果,其中也包括作者们近期的相关工作。最后对未来的研究趋势作了分析和预测。通过本文可以看到,输液管振动问题仍有不少难题尚未很好解决,特别是微纳米输液管的建模和流固耦振机理方面的研究亟需加强  相似文献   

5.
生物芯片压电微流体泵液-固耦合系统模态分析   总被引:3,自引:0,他引:3  
对压电微流体泵粘性流体周期流动进行厚度积分平均近似,得到包含粘性的,非线性浅水波动方程,并采用有限元法得到微泵液体压强矩阵方程.液体压强矩阵方程和压电硅片振动有限元方程耦合,得到一个包含微泵进出口扩散管的液-固耦合系统振动方程.液-固耦合系统的模态分析结果表明,做泵液-固耦合系统的自然频率比不耦合的硅片振动自然频率低很多.随着微泵厚度的减少,液体附加质量和粘性阻尼对耦合系统自然频率的影响更加明显.同时发现,对应的压电片振型函数在液-固耦合前后没有明显变化,还给出硅片-阶模态的振幅-频率特征曲线,对薄型无阀压电微流体泵,浅水波模型合理地表达了微泵液体流动和压电硅片振动的相互作用,以及液体附加质量和粘性阻尼对微泵液-固耦合系统动力特征的影响。  相似文献   

6.
浸没的球面各向同性球壳的自由振动   总被引:1,自引:0,他引:1  
本文引入三个们移函数并用球面调和函数展开,可将球面各向同性弹性力学的基本方程转化成一个独立的二阶常微分方程和另一个耦合的二阶常微分方程组,采用液动压力表示流体与壳的相互作用,可以把无限大不可压缩流体中任意厚度球面各向同性球壳的自由振动频率计算归结为一个代数循征值问题,文中计算了若干种情况下球壳的频率,在各向同性情形与有关文献作了比较。  相似文献   

7.
The equations of thermal vibrational convection of a generalized Newtonian fluid are presented in the case of high-frequency vibration. A condition of quasi-equilibrium of the generalized Newtonian fluid is formulated: its particular case is the condition for rigid (quasi-solid) state. The rigid state stability is investigated for the infinite inclined layer of the nonlinearly viscous Williamson fluid. It is shown that, when heated from below, the rigid state may lose stability for layers oriented almost vertically or horizontally. High-frequency vibration stabilizes the fluid equilibrium state.  相似文献   

8.
The problem of pulsating flow superimposed on the steady laminar flow in a circular tube is investigated for the fluid characterized by the Oldroyd's constitutive equations. The governing equations are solved in an exact manner and the solution is obtained in terms of two non-dimensional fluid parameters. Several interesting illustrations are provided comparing the behaviour of Newtonian fluid and Oldroyd fluids regarding the velocity field, sectional mean velocity, surface friction and balance of force. The flow for small and large frequencies of vibration are obtained as special cases. For Oldroyd fluids also the flow is basically parabolic for small frequencies while it possesses a boundary layer character at large frequencies. The solution for second order fluids and Maxwell fluids can be obtained by appropriately choosing the two fluid parameters.  相似文献   

9.
The averaged viscous incompressible fluid flow driven by a vibrating body with a large-curvature edge is investigated experimentally and numerically. The case of an axisymmetric body immersed in fluid and performing translational vibrations along its axis is considered. Experiments carried out on fluids of various viscosity over a wide vibration frequency and amplitude range and direct numerical calculations based on the complete time-dependent equations of viscous fluid dynamics show that the global structure of the averaged flow significantly depends on the relation between the curvature radius of the body edge and the viscous skin-layer thickness. Different averaged flow regimes are detected and the flow restructuring process is investigated as a function of the vibration amplitude and frequency.  相似文献   

10.
The crossing frequency is the number of times per second the vibration amplitude crosses the zero displacement line from negative displacement to positive displacement. In flow-induced vibration in which the motions are often random and/or a number of modes contribute to the vibration amplitudes, the crossing frequencies are modal-weighted average frequencies of the vibration. It is postulated in this paper that the crossing frequency can be used as a measure of heat exchanger support-plate effectiveness. Using a time-domain, nonlinear analysis technique, the crossing frequencies of a tube vibrating in support plates with oversized holes can be computed as a function of time and the tube-to-support-plate clearances. It was found that the fluid–elastic stability margin of a tube bundle, in the context of the original Connors' equation for tube bundle fluid–elastic instability, should be independent of the tube-to-support-plate clearances. A simple method of estimating the critical velocity based on the time-domain equation of fluid–elastic stability is suggested.  相似文献   

11.
IntroductionThestaticsanddynamicsofrectangularplateshavealwaysbeenofparticularresearchinterestinsolidmechanics.Inparticular,theemergenceofnewmaterialsandnewstructureshasbroughtoutendlessvitalforceintothestudy .Itiswell_knownthattheclassicalplatetheoryb…  相似文献   

12.
The free vibration of an arbitrarily thick orthotropic piezoelectric hollow cylinder with a functionally graded property along the thickness direction and filled with a non-viscous compressible fluid medium is investigated. The analysis is directly based on the three-dimensional exact equations of piezoelasticity using the so-called state space formulations. The original functionally graded shell is approximated by a laminate model, of which the solution will gradually approach the exact one when the number of layers increases. The effect of internal fluid can be taken into consideration by imposing a relation between the fluid pressure and the radial displacement at the interface. Analytical frequency equations are derived for different electrical boundary conditions at two cylindrical surfaces. As particular cases, free vibration of multi-layered piezoelectric hollow cylinder and wave propagation in infinite homogeneous cylinder are studied. Numerical comparison with available results is made and dispersion curves predicted from the present three-dimensional analysis are given. Numerical examples are further performed to investigate the effects of various parameters on the natural frequencies.  相似文献   

13.
Group analysis is used to study stochastic equations of fluid dynamics. Determining equations for admitted Lie groups of transformation involving independent and dependent variables and Wiener processes are obtained. It is shown that, as in the case of deterministic differential equations, admitted groups make it possible to reduce invariant solutions of stochastic differential equations to solutions with a smaller number of independent variables.  相似文献   

14.
采用压电材料作为传感器和驱动器对智能结构振动主动控制进行研究,基于机电耦合的压电智能结构传感和驱动方程,将振动控制动力学方程变换到模态空间对方程进行解耦。通过计算结构最大应变,确定压电元件的最佳粘贴位置。考虑到系统过程噪声和量测噪声的影响,设计Kalman滤波器,采用基于线性二次型高斯(LQG)最优控制的独立模态空间控制方法对压电智能结构的振动进行控制。最后以压电智能悬臂梁为例进行控制仿真,验证了此方法的有效性。  相似文献   

15.
A simple and accurate mixed modal-differential quadrature formulation is proposed to study the dynamic behavior of beams in contact with fluid. Both free and forced vibration problems are considered. The proposed mixed methodology uses the modal technique for the structural domain while it applies the differential quadrature method (DQM) to the fluid domain. Thus, the governing partial differential equations of the beam and fluid are reduced to a set of ordinary differential equations in time. In the case of forced vibration, the Newmark time integration scheme is employed to solve the resulting system of ordinary differential equations. The proposed formulation, in general, combines the simplicity of the modal method and high accuracy and efficiency of the DQM. Its application is shown by solving some beam-fluid interaction problems. Comparisons with analytical solutions show that the present method is very accurate and reliable. To demonstrate its efficiency, the test problems are also solved using the finite element method (FEM). It is found that the proposed method can produce better accuracy than the FEM using less computational time. The technique presented in this investigation is general and can be used to solve various fluid-structure interaction problems.  相似文献   

16.
A boundary element method is presented for the coupled motion analysis of structural vibration with small-amplitude fluid sloshing in two-dimensional space. The linearized Navier-Stokes equations are considered in frequency domain and transformed into boundary integral equations. An appropriate fundamental solution for the Helmholtz equation with pure imaginary constant is found. The condition of zero-stress is imposed on the free surface, and non-slip condition of fluid particles is imposed on the walls of the container. For rigid motion models, the expressions for added mass and added damping to the structural motion equations are obtained. Some typical numerical examples are presented.  相似文献   

17.
A linear analysis of the vibratory behaviour of initially tensioned orthotropic circular cylindrical shells conveying a compressible inviscid fluid is presented. The model is based on the three-dimensional nonlinear theory of elasticity and the Eulerian equations. A nonlinear strain–displacement relationship is employed to derive the geometric stiffness matrix due to initial stresses and hydrostatic pressures. Frequency-dependent fluid mass, damping and stiffness matrices associated with inertia, Coriolis and centrifugal forces, respectively, are derived through the fluid–structure coupling condition. The resulting equation governing the vibration of fluid-conveying shells is solved by the finite element method. The free vibration of initially tensioned orthotropic cylindrical shells conveying fluid is investigated; numerical examples are given and discussed.  相似文献   

18.
IntroductionCablesareextensivelyusedinvariousfieldsofengineering .Theobserveddynamicsofcablesinpracticeoftenexhibitsverycomplexbehavior.Hereareafew ,buttypicalexamples:(a)Thesteelcableofshippingcranemayhavetheaperiodicswingthatproducespoorpositionaccurac…  相似文献   

19.
The free vibration of a functionally graded material hollow sphere submerged in a compressible fluid medium is exactly analyzed. The sphere is assumed to be spherically isotropic with material constants being inhomogeneous along the radial direction. By employing a separation technique as well as the spherical harmonics expansion method, the governing equations are simplified to an uncoupled second-order ordinary differential equation, and a coupled system of two such equations. Solutions to these equations are given when the elastic constants and the mass density are power functions of the radial coordinate. Numerical examples are finally given to show the effect of the material gradient on the natural frequencies. The project is supported by the National Natural Sciences Foundation of China(No. 19872060).  相似文献   

20.
多孔饱和半空间上弹性圆板的动力分析   总被引:6,自引:2,他引:6  
用解析方法研究多孔饱和半空间上弹性圆板的低垂直振动,首先用Hankel变换求解多孔饱和介质动力问题控制方程,然后按混合边值条件建立多孔饱和半空间上弹性板的垂直振动的对偶积分方程,用Abel变换化对偶积分方程为第二类Fredholm积分方程,并给出了数值算例。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号