首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Optical, structural and photocatalytic properties of TiO2 thin films obliquely deposited on quartz glass substrate using an electron-beam evaporation method were investigated. The photocatalytic activity of the films was evaluated by photodecomposition of methylene blue. An increase in incident deposition angle increased the porosity and surface roughness of the TiO2 films. As a result, the photocatalytic activity was enhanced with incident deposition angle up to 60°. However, a further increase in incident deposition angle to 75° reduced the photocatalytic activity due to a lack of the crystalline phase.  相似文献   

2.
TiO2 sol-gels with various Ag/TiO2 molar ratios from 0 to 0.9% were used to fabricate silver-modified nano-structured TiO2 thin films using a layer-by-layer dip-coating (LLDC) technique. This technique allows obtaining TiO2 nano-structured thin films with a silver hierarchical configuration. The coating of pure TiO2 sol-gel and Ag-modified sol-gel was marked as T and A, respectively. According to the coating order and the nature of the TiO2 sol-gel, four types of the TiO2 thin films were constructed, and marked as AT (bottom layer was Ag modified, surface layer was pure TiO2), TA (bottom layer was pure TiO2, surface layer was Ag modified), TT (pure TiO2 thin film) and AA (TiO2 thin film was uniformly Ag modified). These thin films were characterized by means of linear sweep voltammetry (LSV), X-ray diffraction (XRD), scanning electron microscopy (SEM), electrochemical impedance spectroscopy and transient photocurrent (Iph). LSV confirmed the existence of Ag0 state in the TiO2 thin film. SEM and XRD experiments indicated that the sizes of the TiO2 nanoparticles of the resulting films were in the order of TT > AT > TA > AA, suggesting the gradient Ag distribution in the films. The SEM and XRD results also confirmed that Ag had an inhibition effect on the size growth of anatase nanoparticles. Photocatalytic activities of the resulting thin films were also evaluated in the photocatalytic degradation process of methyl orange. The preliminary results demonstrated the sequence of the photocatalytic activity of the resulting films was AT > TA > AA > TT. This suggested that the silver hierarchical configuration can be used to improve the photocatalytic activity of TiO2 thin film.  相似文献   

3.
Au nanoparticles, which were photoreduced by a Nd:YAG laser in HAuCl4 solution containing TiO2 colloid and accompanied by the TiO2 particles, were deposited on the substrate surface. The film consisting of Au/TiO2 particles was characterized by the absorption spectra, scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. The adhesion between the film and substrate was evaluated by using adhesive tape test. It was found that the presence of TiO2 dramatically enhanced the adhesion strength between the film and the substrate, as well as the deposition rate of film. The mechanism for the deposition of Au/TiO2 film was also discussed.  相似文献   

4.
Nanostructured deposits of TiO2 were grown on Si (1 0 0) substrates by laser ablating a TiO2 sintered target in vacuum or in oxygen using a Ti:sapphire laser delivering 80 fs pulses. The effect of the laser irradiation wavelength on the obtained nanostructures, was investigated using 800, 400 and 266 nm at different substrate temperatures and pressures of oxygen. The composition of the deposits was characterized using X-ray photoelectron spectroscopy (XPS) and the surface morphology was studied by environmental scanning electron microscopy (ESEM) and atomic force microscopy (AFM). Deposits are absent of microscopic droplets in all conditions explored. The best deposits, constituted by nanoparticles of an average diameter of 30 nm with a narrow size distribution, were obtained at the shorter laser wavelength of 266 nm under vacuum at substrate room temperature.  相似文献   

5.
The MAPLE technique has been used for the deposition of nanostructured titania (TiO2) nanoparticles thin films to be used for gas sensors applications. An aqueous solution of TiO2 nanoparticles, synthesised by a novel chemical route, was frozen at liquid nitrogen temperature and irradiated with a pulsed ArF excimer laser in a vacuum chamber. A uniform distribution of TiO2 nanoparticles with an average size of about 10 nm was deposited on Si and interdigitated Al2O3 substrates as demonstrated by high resolution scanning electron microscopy-field emission gun inspection (SEM-FEG). Energy dispersive X-ray (EDX) analysis revealed the presence of only the titanium and oxygen signals and FTIR (Fourier transform infra-red) revealed the TiO2 characteristic composition and bond. A comparison with a spin coated thin film obtained from the same solution of TiO2 nanoparticles is reported. The sensing properties of the films deposited on interdigitated substrates were investigated, too.  相似文献   

6.
Pure VO2 and VO2-WO3 composite thin films were grown on quartz substrate by pulsed laser deposition (PLD) technique. The influence of varying WO3 molar concentration in the range from x = 0.0 to x = 0.4 on structural, electrical and optical properties of VO2-WO3 nanocomposite thin films has been systematically investigated. X-ray diffraction studies reveal the single crystalline monoclinic VO2 phase (m-VO2) up to 10% of WO3 content whereas both m-VO2 as well as h-WO3 (hexagonal WO3) phases were present at higher WO3 content (0.2 ≤ x ≤ 0.4). Optical transmittance spectra of the films showed blue shift in the absorption edge with increase in WO3 content. Temperature dependence of resistivity (R-T) measurements indicates significant variation in metal-insulator transition temperature, width of the hysteresis, and shape of the hysteresis curve. Cyclic Voltammetry measurements were performed on VO2-WO3 thin films. A direct correlation between V/W ratio and structure-property relationship was established. The present investigations reveal that doping of WO3 in VO2 is effective to increase the optical transmittance and to reduce the semiconductor to metal phase transition temperature close to room temperature.  相似文献   

7.
We deposited SrCu2O2 (SCO) films on sapphire (Al2O3) (0 0 0 1) substrates by pulsed laser deposition. The crystallographic orientation of the SCO thin film showed clear dependence on the growth temperature. X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis showed that the film deposited at 400 °C was mainly oriented in the SCO [2 0 0] direction, whereas when the growth temperature was increased to 600 °C, the SCO film showed a dominant orientation of SCO [1 1 2]. The SCO film deposited at 500 °C was obvious polycrystalline, showing multi peaks from (2 0 0), (1 1 2), and (2 1 1) diffraction in the XRD spectrum. The SCO film deposited at 600 °C showed a band gap energy of 3.3 eV and transparency up to 80% around 500 nm. The photoluminescence (PL) spectra of the SCO films grown at 500 °C and 600 °C mainly showed blue-green emission, which was attributed to the intra-band transition of the isolated Cu+ and Cu+–Cu+ pairs according to the temperature dependent-PL analysis.  相似文献   

8.
Tin oxide (SnO2) thin films were grown on Si (1 0 0) substrates using pulsed laser deposition (PLD) in O2 gas ambient (10 Pa) and at different substrate temperatures (RT, 150, 300 and 400 °C). The influence of the substrate temperature on the structural and morphological properties of the films was investigated using X-ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM). XRD measurements showed that the almost amorphous microstructure transformed into a polycrystalline SnO2 phase. The film deposited at 400 °C has the best crystalline properties, i.e. optimum growth conditions. However, the film grown at 300 °C has minimum average root mean square (RMS) roughness of 3.1 nm with average grain size of 6.958 nm. The thickness of the thin films determined by the ellipsometer data is also presented and discussed.  相似文献   

9.
Nd-doped BiFeO3 thin films were grown by pulsed laser deposition on quartz substrate and their structural, optical and magnetic properties have been studied. X-ray diffraction analysis revealed that Nd addition caused structural distortion even with 5% of Nd concentration, additional secondary phase appeared in all samples but its intensity was greatly reduced with Nd addition. Doping-induced variations in texture and structure modifying both magnetic and optical properties of BiFeO3 thin films. The energy band gap decreases while the refractive index increases with addition of Nd3+ in BiFeO3 for Bi3+. These variations in energy band gap and refractive index have been explained on the basis of density of states and increase in disorders in the system. All the samples were found to exhibit ferromagnetism at room temperature and the saturation magnetization increases with the increase in structural distortion with addition of Nd. Finally, Nd-doping modifies the physical properties of BiFeO3 in comparison to undoped BiFeO3 thin films.  相似文献   

10.
This paper seeks to determine the optimal settings for the deposition parameters, for TiO2 thin film, prepared on non-alkali glass substrates, by direct current (dc) sputtering, using a ceramic TiO2 target in an argon gas environment. An orthogonal array, the signal-to-noise ratio and analysis of variance are used to analyze the effect of the deposition parameters. Using the Taguchi method for design of a robust experiment, the interactions between factors are also investigated. The main deposition parameters, such as dc power (W), sputtering pressure (Pa), substrate temperature (°C) and deposition time (min), were optimized, with reference to the structure and photocatalytic characteristics of TiO2. The results of this study show that substrate temperature and deposition time have the most significant effect on photocatalytic performance. For the optimal combination of deposition parameters, the (1 1 0) and (2 0 0) peaks of the rutile structure and the (2 0 0) peak of the anatase structure were observed, at 2θ ∼ 27.4°, 39.2° and 48°, respectively. The experimental results illustrate that the Taguchi method allowed a suitable solution to the problem, with the minimum number of trials, compared to a full factorial design. The adhesion of the coatings was also measured and evaluated, via a scratch test. Superior wear behavior was observed, for the TiO2 film, because of the increased strength of the interface of micro-blasted tools.  相似文献   

11.
Silicon dioxide (SiO2) thin films were deposited on BK7 substrates by pulsed laser deposition (PLD) method using ceramic SiO2 targets (C-SiO2-Ts), which was sintered by solid state sintering. The reason for using C-SiO2-T instead of the silicon target is to reduce the oxygen-deficiency phenomenon in deposited SiO2 thin films. The influence of substrate-temperatures, oxygen-pressures and oxygen-plasma-assistance on the properties of synthesized films was studied. X-ray diffraction, atomic force microscopy, ultraviolet–visible–near-infrared scanning spectrophotometry were used to characterize the crystallinity, morphology and optical properties of deposited films. Results show that the root-mean-square roughness of films increased with the increase of oxygen-pressure, substrate-temperature and with the employment of oxygen-plasma. The transmittance of films increased with the increase of oxygen-pressure and decreased with the increase of substrate-temperature and with the employment of oxygen-plasma. Stoichiometric SiO2 thin film with high optical quality was synthesized at room-temperature and 20 Pa oxygen-pressure using C-SiO2-T.  相似文献   

12.
Well crystallized and homogeneous LiFePO4/C (LFPO) thin films have been grown by pulsed laser deposition (PLD). The targets were prepared by the sol-gel process at 600 °C. The structure of the polycrystalline powders was analyzed with X-ray powder diffraction (XRD) data. The XRD patterns were indexed having a single phase olivine structure (Pnma). LFPO thin films have been deposited on three different substrates: aluminum (Al), stainless steel (SS) and silicon (Si) by pulsed laser deposition (PLD). The structure of the films was analyzed by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM). It is found that the crystallinity of the thin films depends on the substrate temperature which was set at 500 °C. When annealed treatments were used, secondary phases were found, so, one step depositions at 500 °C were made.Stainless steel is demonstrated to be the best choice to act as substrate for phosphate deposition. LiFePO4 thin films grown on stainless steel plates exhibited the presence of carbon, inducing a slight conductivity enhancement that makes these films promising candidates as one step produced cathodes in Li-ion microbatteries.  相似文献   

13.
Thin films of ZnO-SnO2 composites have been deposited on Si(1 0 0) and glass substrates at 500 °C by pulsed laser ablation using different composite targets with ZnO amount varying between 1 and 50 wt%. The effect of increasing ZnO-content on electrical, optical and structural properties of the ZnO-SnO2 films has been investigated. X-ray diffraction analysis indicates that the as-deposited ZnO-SnO2 films can be both crystalline (for ZnO <1 wt%) and amorphous (for ZnO ≥ 10 wt%) in nature. Atomic force microscopy studies of the as-prepared composite films indicate that the surfaces are fairly smooth with rms roughness varying between 3.07 and 2.04 nm. The average optical transmittance of the as-deposited films in the visible range (400-800 nm), decreases from 90% to 72% for increasing ZnO concentration in the film. The band gap energy (Eg) seems to depend on the amount of ZnO addition, with the maximum obtained at 1 wt% ZnO. Assuming that the interband electron transition is direct, the optical band gap has been found to be in the range 3.24-3.69 eV for as-deposited composite films. The lowest electrical resistivity of 7.6 × 10−3 Ω cm has been achieved with the 25 wt% ZnO composite film deposited at 500 °C. The photoluminescence spectrum of the composite films shows a decrease in PL intensity with increasing ZnO concentration.  相似文献   

14.
We report morphological and optical properties of a colloidal TiO2 nanoparticle film, deposited on a quartz substrate by using the Matrix-Assisted Pulsed Laser Evaporation (MAPLE) technique. Atomic Force Microscopy demonstrated that a good uniformity of the deposition can be obtained. The presence of agglomerates with dimensions of about 1 μm in size was noticed. Form UV-vis transmission spectra, recorded in the 200-800 nm range, the optical constants and the energy gap were determined besides the film thickness. The optical constants resulted in agreement with the values reported in literature for TiO2 nanoparticle thin films.  相似文献   

15.
CdS/TiO2 nanocomposites were prepared via a simple wet chemical method, and characterized through X-ray diffraction (XRD) and transmission electron microscopy (TEM). Their ability to degrade Acid Rhodamine B was investigated under visible light irradiation. The results indicate that CdS/TiO2 nanocomposite with a mass ratio of 4:1(TiO2:CdS) showed high photocatalytic activity and the CdS loaded on TiO2 nanotube surface exhibited a hexagonal phase. The dispersion of CdS on TiO2 nanotube surface had an important effect on the degradation efficiency of pollutant, which provides a strategy for practical industry application.  相似文献   

16.
TiO2/SiOx double-layers have been prepared at room temperature by RF magnetron sputtering. The TiO2 top-layer was deposited in an Ar atmosphere, while the SiOx bottom-layer was deposited in an Ar/O2 atmosphere. Samples were characterized using X-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy, and photoluminescence techniques. The photocatalytic activity of the samples was evaluated by the photodegradation of methylene blue; the results showed that the photocatalytic activity of the TiO2/SiOx double-layers was superior to that of the TiO2 single-layers. The presence of the SiOx bottom-layer improved the photocatalytic activity of the TiO2 layer because it may act as a trap for electrons generated in the TiO2 layer thus preventing electron-hole recombinations.  相似文献   

17.
The formation and optical response of VOx nanoparticles embedded in amorphous aluminium oxide (Al2O3) thin films by pulsed laser deposition is studied. The thin films have been grown by alternate laser ablation of V and Al2O3 targets, which has resulted in a multilayer structure with embedded nanoparticles. The V content has been varied by changing the number of pulses on the V target. It is found that VOx nanoparticles with dimensions around 5 nm have been formed. The structural analysis shows that the vanadium nanoparticles are oxidized, although probably there is not a unique oxide phase for each sample. The films show a different optical response depending on their vanadium content. Optical switching as a function of temperature has been observed for the two films with the highest vanadium content, at transition temperatures of about −20 °C and 315 °C thus suggesting the presence of nanoparticles with compositions V4O7 and V2O5, respectively.  相似文献   

18.
《Current Applied Physics》2019,19(12):1338-1342
CeCoIn5 (Co115) thin films have been grown on Al2O3 (000l) substrates through the pulsed laser deposition (PLD). The films are grown mainly along the c-axis, with CeIn3 and In-related alloys. The rock-salt type grains are nucleated, where Co115 grains mixed with excess indium are evenly distributed over the substrate. The electrical resistivity of the films shows a Kondo coherence peak near 47 K and the zero-resistance superconducting state at 1.8 K, which is the first observation in the PLD grown thin films of Co115. The Rietveld refinement of the thin films shows that the c/a ratio (tetragonality) is suppressed to 1.6312 from 1.6374 of single crystals, which is consistent with the linear relationship between the superconducting transition temperature and tetragonality. The good agreement indicates that the PLD could provide an alternative route to tune the 2D character of the critical spin fluctuations to understand the superconducting pairing mechanism of Co115.  相似文献   

19.
Porous TiO2 films were deposited on SiO2 pre-coated glass-slides by sol-gel method using octadecylamine (ODA) as template. The amount of ODA in the sol played an important role on the physicochemical properties and photocatalytic performance of the TiO2 films. The films prepared at different conditions were all composed of anatase titanium dioxide crystals, and TiO2 crystalline size got larger with increasing ODA amount. The maximum specific surface area of 41.5 m2/g was obtained for TiO2 powders prepared from titanium sol containing 2.0 g ODA. Methyl orange degradation rate was enhanced along with increasing ODA amount and reached the maximal value at 2.0 g addition of ODA. After 40 min of UV-light irradiation, methyl orange degradation rate reached 30.5% on the porous film, which was about 10% higher than that on the smooth film. Porous TiO2 film showed almost constant activity with slight decrease from 30.5% to 28.5% after 4 times of recycles.  相似文献   

20.
Z. Zhu  W. Li 《Applied Surface Science》2010,256(20):5876-5881
An energy-dependent kinetic Monte Carlo approach was proposed to simulate the multilayer growth of BaTiO3 thin films via pulsed laser deposition, in which the four steps, such as the deposition of atoms, the diffusion of adatoms, the bonding of adatoms, and the surface migration of adatoms, were considered. Distinguishing with the traditional solid-on-solid (SOS) model, the adatom bonding and the overhanging of atoms, according to the perovskite structure, were specially adopted to describe the ferroelectric thin film growth. The activation energy was considered from the interactions between the ions, which were calculated by Born-Mayer-Huggins (BMH) potential. From the simulation the relative curves of the each layer coverage and roughness vs total coverage were obtained by varying the parameter values of the incident kinetic energy, laser repetition rate and mean deposition rate. The relationship between growth modes and the different parameters was also acquired.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号