首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
In this paper, the elimination from aqueous solution of the pollutant benzopurpurine 4B by Mg-Al-CO3 hydrotalcite and its modified form Mg-Al-500 has been studied. Mg-Al-CO32− layered double hydroxide with an Mg/Al molar ratio of 2.0 was synthesized by the co-precipitation method, and its modification was carried out by calcination. The affinity of these materials with a mixture of benzopurpurine 4B was studied as a function of dye-adsorbent contact time, initial pH of the solution, initial dye concentration and temperature. The results indicate that HDLs were effective in removing benzopurpurine 4B anionic dye. Their saturated adsorption capacities are very high, particularly for the calcined material Mg-Al-500 compared to the standard one Mg-Al-CO32−.The characterisation of the solid Mg-Al-500, both fresh and after removal of the dye by X-ray diffraction and infrared spectroscopy, shows that the benzopurpurine 4B adsorption on this calcined phase is enhanced by reconstruction of a matrix hydrotalcite intercalated by the dye, with basal spacing of 23.77 Å, which is larger than that of Mg-Al-CO32− LDHs (7.57 Å).  相似文献   

2.
Adsorption of Cr(III) from both synthetic and real samples of tannery wastewater treatment's effluent on chitin-humic acid (chitin-HA) hybrid has been carried out. Rate constant and capacity of adsorption of Cr(III) from the synthetic sample were investigated and removal of Cr(III) from the real sample was tested at optimum medium acidity equivalent to pH 3.5. Characterization using Fourier transform infra red (FT-IR) spectroscopy revealed that both COO and N-acetyl originated from respectively humic acid (HA) and chitin were involved on the adsorption of Cr(III), and hence the Freundlich's multilayer and multi-energy adsorption model was more applicable to treat the adsorption data than the Langmuir's monolayer and mono-energy model. The quantification of adsorption capacity and rate constant using Freundlich isotherm model and first order adsorption reaching equilibrium yielded values of 6.84 × 10−4 mol g−1 (35.57 mg g−1) and 1.70 × 10−2 min−1, respectively. Removal test for the real wastewater treatment's effluent showed that the maximum amount of Cr(III) could be removed by 1 g of chitin-HA hybrid was 2.08 × 10−4 mol or equivalent to 10.82 mg.  相似文献   

3.
The water-soluble Pr (Ⅲ) and Nd (Ⅲ) complexes with an ofloxacin derivative have been prepared and characterized. The single-crystal X-ray diffraction showed that the Pr (III) and Nd (III) complexes have the similar molecular structure. Under physiological pH condition, the effects of [PrL(NO3)2(CH3OH)](NO3) and [NdL(NO3)2(CH3OH)](NO3) on bovine serum albumin (BSA) were examined using fluorescence spectroscopy in combination with UV-vis absorbance and circular dichroism (CD) spectra. The result reveals that the quenching mechanism of fluorescence of BSA by two complexes is a static quenching process and the number of binding sites is about 1 for both. The thermodynamic parameters (ΔH=−14.52 kJ mol−1, ΔS=56.54 J mol−1 K−1 for [PrL(NO3)2(CH3OH)](NO3) and ΔH=−24.63 kJ mol−1, ΔS=22.07 J mol−1 K−1 for [NdL(NO3)2(CH3OH)](NO3)) indicate that hydrophobic and electrostatic interactions are the main binding force in the complexes-BSA system. The binding average distance between complexes and BSA was obtained on the basis of Förster's theory. In addition, it was proved by the CD spectra that the BSA secondary structure was changed in the presence of complexes in an aqueous solution.  相似文献   

4.
Hybrid of humic acid (HA) and chitin has been synthesized and the hybrid material (chitin-HA) was then applied as sorbent to adsorb Ni(II). The HA was extracted from peat soil of Gambut District, South Kalimantan, Indonesia, according to the procedure recommended by IHSS (International Humic Substances Society). The chitin was isolated from crab shell waste of sea food restaurants through deproteination using NaOH 3.5% (w/v) and followed by removal of inorganic impurities using HCl 1 M. The synthesis of chitin-HA was performed by reacting gelatinous chitin solution in HCl 0.5 M and HA solution in NaOH 0.5 M. Parameters investigated in this work consists of effect of medium acidity on the sorption, sorption rate (ks) and desorption rate (kd) constants, Langmuir (monolayer) and Freundlich (multilayer) sorption capacities, and energy (E) of sorption. The ks and kd were determined according to a kinetic model of first order sorption reaching equilibrium, monolayer sorption capacity (b) and energy (E) were determined according to the Langmuir isotherm model, and multilayer sorption capacity (B) was determined based on the Freundlich isotherm model.Sorption of Ni(II) on both chitin and chitin-HA was maximum at pH 8.0. The kinetic expression resulted from the proposed kinetic model has been shown to be more applicable than the commonly known Lagergren equation obtained from the pseudo-first order sorption model. The application of the proposed model revealed that the presence of HA increased the ks from 0.018 min−1 for chitin to 0.031 min−1 for chitin-HA. As for ks, the value of b was also bigger in the presence of HA, i.e. 7.42 × 10−5 mol/g for chitin and 9.93 × 10−5 mol/g for the chitin-HA. Unlike ks and b, the value of E slightly decreased from 23.23 to 21.51 kJ/mol for the absence and presence of HA, respectively. It can also be deduced that the presence of HA on chitin contributed more to the additional layer of Ni(II) sorbed on sorbent. Without HA, B for chitin was only 6.17 times higher than b, while with the presence of HA, the enhancement of the sorption capacity from the multilayer (B) to the monolayer (b) was 19.40. The increase of ks, b, B, and the decrease of E would be very benefit in the real application of chitin-HA for the recovery of Ni(II) from aqueous samples.  相似文献   

5.
The natural zeolite tuff (clinoptilolite) from a Serbian deposit has been studied as adsorbent for Ni(II) ions from aqueous solutions. Its sorption capacity at 298 K varies from 1.9 mg Ni g−1 (for the initial solution concentration of 100 mg Ni dm−3) to 3.8 mg Ni g−1 (for C0 = 600 mg Ni dm−3) and it increases 3 times at 338 K. The sorption is best described by the Sips isotherm model. The sorption kinetics follows the pseudo-second-order model, the activation energies being 7.44, 5.86, 6.62 and 6.63 kJ mol−1 for C0 = 100, 200, 300 and 400 mg Ni dm−3, respectively. The sorption involves a film diffusion, an intra-particle diffusion, and a chemical cation-exchange between the Na+ ions of clinoptilolite and the Ni2+ ions. The sorption is endothermic (ΔH° being 37.9, 33.4, 30.0, 27.7 and 24.3 kJ mol−1 for C0 = 100, 200, 300, 400 and 600 mg Ni dm−3, respectively) and spontaneous in the 298-338 K temperature range. Thermal treatment of the Ni(II)-loaded clinoptilolite results in the formation of spherical nano-NiO particles of approx. 5 nm in diameter which are randomly dispersed in the clinoptilolite lattice.  相似文献   

6.
New types of hybrid material have been synthesized by using four different methods of immobilization of humic acid (HA) on chitin. The most stable hybrid material toward the change of medium acidity was then utilized as sorbent for Cr(III).The HA was extracted from peat soil of Gambut District, South Kalimantan, Indonesia, using the recommended procedure of International Humic Substances Society (IHSS), while the chitin was isolated from crab shell waste through deproteination using 3.5% (w/v) NaOH and followed by removal of inorganic impurities using 1 M HCl. The four methods of immobilization of HA on chitin were (i) Method A: chitin powder (4 g) was gently poured into the stirred solution of 0.4 g HA in 40 mL of 0.01 M NaOH. After overnight stirring, the solid was separated, washed with water, and dried in oven at 70 °C. (ii) Method B: gelatinous chitin (40 g) in 250 mL of 0.5 M HCl was reacted with HA (4 g) in 500 mL of 0.5 M NaOH and aged for 24 h. The product was washed with water and dried. (iii) Method C: HA powder (0.5 g) was mixed with the stirred gel of chitin (2.5 g) in 60 mL of CaCl2 saturated methanol and the mixture was then washed with the mixed solution of 25 mL of 2 M sodium citrate and ethylene glycol 1:1. The solid was separated, washed with water, and dried. (iv) Method D: the solution of HA (0.056 g) in 10 mL of 0.01 M NaOH was reacted with the gel of chitin (0.2 g) in 10 mL of CaCl2 saturated methanol. After 24 h stirring, the solid was separated from the reaction medium, washed with the mixed solution of 2 M sodium citrate and ethylene glycol 1:1, and followed by washing with water and drying. Parameters investigated in this study consisted of the stability test of the immobilized HA, as well as the rate constant (k1), capacity (b), and energy (E) of sorption as well as the rate constant of desorption (k−1). The k1 and k−1 were determined according to a kinetic model of first order sorption reaching equilibrium, while the b and E were determined according to the Langmuir isotherm model.Compared to HA, Methods, A, C, and D; Method B produced the most stable immobilization of HA on chitin. The hybrid material (Chitin-HA) synthesized through Method B was stable in the acidity range that equivalent to pH 2.0-11.0. At the acidity giving maximum sorption, i.e. pH 5, the presence of immobilized HA on the Chitin-HA enhanced more than three times the k1 and k−1, i.e. from 0.057 min−1 and 8.51 × 10−4 (min−1) (mol/L) for chitin to 0.183 min−1 and 3.27 × 10−3 (min−1) (mol/L) for the Chitin-HA. On the contrary, the presence of HA on Chitin-HA only gave small increase on b and small decrease on E. The values of b and E for Cr(III) on chitin were 1.45 × 10−2 mol/g and 23.12 kJ/mol, respectively, while those on Chitin-HA were 1.78 × 10−2 mol/g and 19.95 kJ/mol, respectively.  相似文献   

7.
AWO4 (A = Ca, Sr) was prepared from metal salts [Ca(NO3)2·4H2O or Sr(NO3)2], Na2WO4·2H2O and different moles of cetyltrimethylammonium bromide (CTAB) in water by cyclic microwave irradiation. The structure of AWO4 was characterized by X-ray diffraction (XRD) and selected area electron diffraction (SAED). Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) revealed the presence of nanoparticles in clusters with different morphologies; spheres, peaches with notches, dumb-bells and bundles, influenced by CTAB. Six Raman vibrational peaks of scheelite structure were detected at 908, 835, 793, 399, 332 and 210 cm−1 for CaWO4 and 917, 833, 795, 372, 336 and 192 cm−1 for SrWO4, which are assigned as ν1(Ag), ν3(Bg), ν3(Eg), ν4(Bg), ν2(Ag) and νf.r.(Ag), respectively. Fourier transform infrared (FTIR) spectra provided the evidence of W-O stretching vibration in [WO4]2− tetrahedrons at 793 cm−1 for CaWO4 and 807 cm−1 for SrWO4. The peaks of photoluminescence (PL) spectra were at 428-434 nm for CaWO4, and 447-451 nm for SrWO4.  相似文献   

8.
Three activated carbons (ACs) for the electrodes of supercapacitor were prepared from cationic starch using KOH, ZnCl2 and ZnCl2/CO2 activation. The BET surface area, pore volume and pore size distribution of the ACs were evaluated using density functional theory method, based on N2 adsorption isotherms at 77 K. The surface morphology was characterized with SEM. Their electrochemical performance in prototype capacitors was determined by galvanostatic charge/discharge characteristics and cyclic voltammetry, and compared with that of a commercial AC, which was especially prepared for use in supercapacitors. The KOH-activated starch AC presented higher BET surface area (3332 m2 g−1) and larger pore volume (1.585 cm3 g−1) than those of the others, and had a different surface morphology. When used for the electrodes of supercapacitors, it exhibited excellent capacitance characteristics in 30 wt% KOH aqueous electrolytes and showed a high specific capacitance of 238 F g−1 at 370 mA g−1, which was nearly twice that of the commercial AC.  相似文献   

9.
Pure LaAlO3 nanoparticles were synthesized, using a citrate-precursor technique. La(NO3)3, Al(NO3)3, and C3H4(OH)(COOH)3, in a molar ratio of 1:1:4.5, were dissolved in deionized water. The pH of the aqueous solution was adjusted using NH4OH. After drying, the citrate precursors were charred at 350 °C, followed by calcination at different temperatures. The thermochemical behavior of the charred citrate precursor to form LaAlO3 was investigated using X-ray diffractometry, infrared spectroscopy, thermogravimetric analysis, and differential thermal analysis. While the charred specimen obtained at pH=2 (without NH4OH addition) was composed of LaAl(OOCH2)3, the charred specimens obtained at pH>2 were composed of LaAlO3−x−y(CO3)x(OH)2y. All these metallic salts were decomposed at temperatures between 600 and 780 °C to form crystalline LaAlO3 but calcining the specimens in air at ?800 °C were required to remove all residual chars to produce pure LaAlO3. At 900 °C, the citrate-derived particles obtained at pH>2 were composed of LaAlO3 crystallites with an average size of ∼30 nm.  相似文献   

10.
Liang Sun  Feng-yun Guo  Li-li Liu  Wei Cai  Yu-heng Xu 《Optik》2009,120(11):514-518
OH-absorption properties of the optical damage region in a series of codoped In/Mg:LiNbO3 crystals with various Li/Nb ratios have been investigated. The OH-associated vibrational peak at 3507 cm−1 is confirmed to occur in crystals with Li/Nb ratio of 0.94. For codoped In/Mg:LiNbO3 crystals with Li/Nb ratio of 1.05 and 1.20, the OH-associated vibrational peaks are detected at 3536 and 3507 cm−1 as well. A new peak at 3518 cm−1 attributed to a (InNb)2−-OH-(MgNb)3− defect center is revealed in crystals with Li/Nb ratio 1.38. When the “In-Mg threshold” concentration is reached, the optical damage resistance ability of codoped In/Mg:LiNbO3 crystals is greatly improved.  相似文献   

11.
Low-temperature silicon dioxide (SiO2) films were grown on silicon germanium (SiGe) surfaces using the liquid-phase deposition (LPD) method. The growth solutions of LPD-SiO2 are hydrofluorosilicic acid (H2SiF6) and boric acid (H3BO3). It was found that the growth rate increases with increasing temperature and concentration of H3BO3. The Auger electron spectroscopy profile shows that no pileup of Ge atoms occurs at the interface of SiO2/SiGe after the LPD-SiO2 growth. Al/LPD-SiO2/p-SiGe MOS capacitors were prepared to determine capacitance-voltage (C-V) and current-voltage (I-V) characteristics. In our experiments, a low leakage current density of 8.69 × 10−9 A/cm2 under a 2 MV/cm electric field was observed. Such a value is much smaller than those of plasma- and thermal-oxides as a result of no plasma damage and a lower growth temperature. Moreover, lower oxide charges and interface charge densities of 3.82 × 1010 cm−2 and 1.12 × 1011 eV−1 cm−2, respectively, were achieved in our LPD-SiO2 compared to direct photochemical-vapor-deposition-SiO2.  相似文献   

12.
Activated carbons were prepared by air and carbon dioxide activation, from almond tree pruning, with the aim of obtaining carbons that reproduce the textural and mechanical properties of the carbons currently used in the filtering system of the condenser vacuum installation of a Thermonuclear Plant (CNA; Central Nuclear de Almaraz in Caceres, Spain), produced from coconut shell. The variables studied in non-catalytic gasification series with air were the temperature (215-270 °C) and the time (1-16 h) and the influence of the addition of one catalyst (Co) and the time (1-2 h) in catalytic gasification. In the case of activation with CO2, the influence of the temperature (700-950 °C) and the time (1-8 h) was studied. The resulting carbons were characterized in terms of their BET surface, porosity, and pore size distribution. The N2 adsorption isotherms at 77 K for both series showed a type I behaviour, typical of microporous materials. The isotherms showed that with both gasificant agents the temperature rise produced an increase in the carbon porosity. With regards to the activation time, a positive effect on the N2 adsorbed volume on the carbons was observed. The best carbons of each series, as well as the CNA (carbon currently used in the CNA), were characterized by mercury porosimetry and iodine solution adsorption isotherms. The results obtained allowed to state that several of the carbons produced had characteristics similar to the carbon that is target of reproduction (which has SBET of 741 m2 g−1, Vmi of 0.39 cm3 g−1 and a iodine retention capacity of 429.3 mg g−1): carbon C (gasification with CO2 at 850 °C during 1 h), with SBET of 523 m2 g−1, Vmi of 0.33 cm3 g−1 and a iodine retention capacity of 402.5 mg g−1, and carbon D (gasification with CO2 at 900 °C during 1 h), whose SBET is 672 m2 g−1, Vmi is 0.28 cm3 g−1 and has a iodine retention capacity of 345.2 mg g−1.  相似文献   

13.
Highly ordered mesoporous Co3O4, NiO, and their metals were synthesized by nanocasting method using there corresponding mesoporous SBA-15 silica as a template. The obtained porous metal oxides have high surface areas, large pore volume, and a narrow pore size distribution. The N2-adsorption data for mesoporous metal oxides have provided the BET area of 257.7 m2 g−1 and the total pore volume of 0.46 cm3 g−1. The mesoporous metals were employed as a catalyst in the synthesis of (S)-3-pyrrolidinol from chiral (S)-4-chloro-3-hydroxybutyronitrile, and a high yield to (S)-3-pyrrolidinol-salt was obtained on the mesoporous Co metal catalyst.  相似文献   

14.
Metal tungstates (MeWO4, Me = Ba, Sr and Ca) were successfully prepared using the corresponding Me(NO3)2·2H2O and Na2WO4·2H2O in ethylene glycol by the 5 h sonochemical process. The tungstate phases with scheelite structure were detected with X-ray diffraction (XRD) and selected area electron diffraction (SAED). Their calculated lattice parameters are in accord with those of the JCPDS cards. Transmission electron microscopy (TEM) revealed the presence of nanoparticles composing the products. Their average sizes are 42.0 ± 10.4, 18.5 ± 5.1 and 13.1 ± 3.3 nm for Me = Ba, Sr and Ca, respectively. Interplanar spaces of the crystals were also characterized with high-resolution TEM (HRTEM). Their crystallographic planes are aligned in systematic array. Six different vibration wavenumbers were detected using Raman spectrometer and are specified as ν1(Ag), ν3(Bg), ν3(Eg), ν4(Bg), ν2(Ag) and free rotation. Fourier transform infrared (FTIR) spectra provided the evidence of scheelite structure with W-O anti-symmetric stretching vibration of [WO4]2− tetrahedrons at 786-883 cm−1. Photoluminescence emission of the products was detected over the range of 384-416 nm.  相似文献   

15.
Single crystals of organic nonlinear optical (NLO) materials l-Histidine nitrate (C6H10N3O2)+ · (NO3) and l-Cysteine tartrate monohydrate (C3H8NO2S)+ · (C4H5O6) · H2O were grown by submerged seed solution method. Characterization of the crystals was made using single crystal X-ray diffraction. Fourier transform infrared (FTIR) spectroscopic studies, optical behaviour such as UV-visible-NIR absorption spectra and second harmonic generation (SHG) conversion efficiency were investigated to explore the NLO characteristics of the above materials. Microhardness measurements and dielectric studies of the compounds were also carried out.  相似文献   

16.
Using cherry stones, the preparation of activated carbon has been undertaken in the present study by chemical activation with potassium hydroxide. A series of KOH-activated products was prepared by varying the carbonisation temperature in the 400-900 °C range. Such products were characterised texturally by gas adsorption (N2, −196 °C), mercury porosimetry, and helium and mercury density measurements. FT-IR spectroscopy was also applied. The carbons prepared as a rule are microporous and macroporous solids. The degree of development of surface area and porosity increases with increasing carbonisation temperature. For the carbon heated at 900 °C the specific surface area (BET) is 1624 m2 g−1, the micropore volume is 0.67 cm3 g−1, the mesopore volume is 0.28 cm3 g−1, and the macropore volume is 1.84 cm3 g−1.  相似文献   

17.
Zinc blende (ZB) CdSe hollow nanospheres were solvothermally synthesized from the reaction of Cd(NO3)2·4H2O with a homogeneously secondary Se source, which was first prepared by dissolving Se powder in the mixture of ethanol and oleic acid at 205 °C. As Se power directly reacted with Cd(NO3)2·4H2O in the above mixed solvents, wurtzite (W) CdSe solid nanoparticles were produced. Time-dependent experiments suggested that the formation of CdSe hollow nanospheres was attributed to an inside-out Ostwald ripening process. The influences of reaction time, temperature and ethanol/oleic acid volume ratio on the morphology, phase and size of the hollow nanospheres were also studied. Infrared (IR) spectroscopy investigations revealed that oleic acid with long alkene chains behaved as a reducing agent to reduce Se powder to Se2− in the synthesis. Photoluminescence (PL) measurements showed that the ZB CdSe hollow nanospheres presented an obvious blue-shifted emission by 42 nm, and the W CdSe solid nanoparticles exhibited a band gap emission of bulk counterpart.  相似文献   

18.
New layered magnesium hydroxides whose brucite layers had been bridged with malate2− and tartrate2− were prepared by dropwise addition of Mg(NO3)2 to malate and tartrate solutions at a constant pH of 10.5. Malate2− and tartrate2− may have been also absorbed on the surfaces of hydroxides. In the case of using citrate solution, Mg(OH)2 absorbed with citrate3− was produced. These materials were found to take up Cu2+ rapidly from an aqueous solution at pH 5.0. Copper uptake by precipitates is attributed to the formation of chelate complexes of Cu2+ with citrate3−, malate2−, and tartrate2−.  相似文献   

19.
In this work, hierarchically porous TiO2–B nanoflowers have been successfully synthesized via a facile solvothermal method followed by calcination treatment. The TiO2–B nanoflowers are constructed by thin nanosheets, presenting ultrahigh specific surface area, up to 214.6 m2 g−1. As anode materials for Li-ion batteries, the TiO2–B sample shows high reversible capacity, excellent cycling performance and superior rate capability. The specific capacity of TiO2–B could remain over 285 mA h g−1 at 1 C and 181 mA h g−1 at 10 C rate after 100 cycles. We believe that the pseudocapacitive mechanism, ultrahigh surface area and scrupulous nanoarchitecture of the TiO2–B are responsible for the enhancement of electrochemical properties.  相似文献   

20.
Porous LiNi0.75Co0.25O2 microspheres are successfully prepared by a simple hydrothermal process by using H[Ni0.75Co0.25OOH]3 and LiOH as starting materials in the presence of urea for the first time. The synthesized samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), specific surface area (SBET), and electrochemical performance. The synthesized LiNi0.75Co0.25O2 has a good electrochemical performance with an initial discharge capacity of 169.3 mA g−1 and good capacity retention of 96.7% after 50 cycles at 0.2 C (25 mA g−1). The electrochemical lithium ion insertion/extraction process is quite reversible even at 5 C. Furthermore, the structure in the charge-discharge process is stable and the impedance increased slowly during cycling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号