首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this work we investigate the rainbows appearing in channeling of 1 GeV protons through the long (11,9) single-wall carbon nanotubes. The nanotube length is varied from 10 to 500 μm. The angular distributions of channeled protons are computed using the numerical solution of the proton equations of motion in the transverse plane and the Monte Carlo method. The rainbows are identified as the rings in the angular distributions, which correspond to the extrema of the proton deflection functions. Each rainbow is characterized by a sharp decrease of the proton yield on its large angle side. As the nanotube length increases, the number of rainbows increases and the average distance between them decreases in an easily predictable way. When the average distance between the rainbows becomes smaller than the resolution of the angular distribution, one cannot distinguish between the adjacent rainbows, and the angular distribution becomes equilibrated. We call this route to equilibration the rainbow route to equilibration. This work is a demonstration of how a simple one-dimensional bound dynamic system can exhibit a complex collective behavior.  相似文献   

2.
A discrete shell model is proposed to describe the radial deformation of carbon nanotubes under a hydrostatic pressure and the radial Young's modulus of (single- or multi-walled) nanotubes is obtained. It is found that the radial modulus decreases with increasing tube diameter while increases with increasing number of layers. The computational results agree well with the previous results of SWNTs and indicate that the radial modulus of carbon nanotubes is independent of the Poisson's ratio.  相似文献   

3.
We present Raman scattering on carbon nanotubes functionalized with pentyl groups. Studies of the intermediate frequency region and the C–H bond stretching signal along with the D mode show evidence of the addition reaction by Raman spectroscopy. From the resonance profiles of the radial breathing mode (RBM) we assign the chiral indices of the tubes and study the influence of the functionalization on the transition energies, shift and intensity of the RBM signal. The largest effect we observe is on the Raman intensity of the radial breathing mode. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

  相似文献   


4.
Self-assembled oligomeric nanostructures consisting of bisbiotinylated DNA fragments connected by the protein streptavidin (STV) are studied by dynamic scanning force microscopy (SFM) operating in air. A comparison of the images taken in repulsive and attractive regimes is systematically made on DNA and STV structures. Stable and reproducible SFM images are obtained in the attractive regime by using a special feedback circuit, called Q-control. On the other hand, when SFM is operating in the repulsive regime, deformation of the structures that reduce the resolution and the image quality are clearly observable. The heights of both DNA and STV have been measured as a function of the tip/molecule interaction forces. This study offers the possibility to suggest a different mechanical behavior of DNA with respect to STV. Received: 24 July 2001 / Accepted: 3 December 2001 / Published online: 4 March 2002  相似文献   

5.
The effects of surface functionality and relative humidity (RH) on nanomechanical contact stiffness were investigated using atomic force acoustic microscopy (AFAM), a contact scanned-probe microscopy (SPM) technique. Self-assembled monolayers (SAMs) with controlled surface energy were studied systematically in a controlled-humidity chamber. AFAM amplitude images of a micropatterned, graded-surface-energy SAM sample revealed that image contrast depended on both ambient humidity and surface energy. Quantitative AFAM point measurements indicated that the contact stiffness remained roughly constant for the hydrophobic SAM but increased monotonically for the hydrophilic SAM. To correct for this unphysical behavior, a viscoelastic damping term representing capillary forces between the tip and the SAM was added to the data analysis model. The contact stiffness calculated with this revised model remained constant with RH, while the damping term increased strongly with RH for the hydrophilic SAM. The observed behavior is consistent with previous studies of surface energy and RH behavior using AFM pull-off forces. Our results show that surface and environmental conditions can influence accurate measurements of nanomechanical properties with SPM methods such as AFAM.  相似文献   

6.
In this work we review the basic properties of carbon nanotubes from the standpoint of group theory. The zone folding scheme is reviewed in the light of the helical symmetry of the nanotube. The group theory for chiral and achiral nanotubes is reviewed, and the representations of the factor group of the wavevector k are obtained. The similarities and differences between the formalism of the group of the wavevector and that of line groups are addressed with respect to the irreducible representations and quantum numbers associated with linear and angular momenta. Finally, we extend the results of group theory to illuminate the electronic and vibrational properties of carbon nanotubes. Selection rules for the optical absorption and double resonance Raman scattering are discussed for the case where the electron–electron interaction is negligible (metallic nanotubes) and for the case where exciton binding energies are strong and cannot be neglected.  相似文献   

7.
Carbon nanotubes with uniform density were synthesized on carbon fiber substrate by the floating catalyst method. The morphology and microstructure were characterized by scanning electron microscopy and Raman spectroscopy. The results of field emission showed that the emission current density of carbon nanotubes/carbon fibers was 10 μA/cm2 and 1 mA/cm2 at the field of 1.25 and 2.25 V/μm, respectively, and the emission current density could be 10 and 81.2 mA/cm2 with the field of 4.5 and 7 V/μm, respectively. Using uniform and sparse density distribution of carbon nanotubes on carbon fiber substrate, the tip predominance of carbon nanotubes can be exerted, and simultaneously the effect of screening between adjacent carbon nanotubes on field emission performance can also be effectively decreased. Therefore, the carbon nanotubes/carbon fibers composite should be a good candidate for a cold cathode material.  相似文献   

8.
The electroluminescence from single‐walled carbon nanotube field effect transistors is spectrally resolved, and shows two distinct modes of light emission. The vast majority of nanotubes have spectrally broad emission consistent with the spectrum of blackbody radiation. Much more rarely, superposed on the broad emission is a single narrow (<50 meV) peak which is consistent with expectation for electron–hole recombination. The narrow emission is strong even at lower biases and in general has greater peak intensity than the broadband emission. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Optical properties of Fe-doped silica films on Si were investigated by ellipsometric technique in the region 1-5 eV. Samples were produced by sol-gel method. Precursors were prepared by mixing tetraethoxysilane (TEOS) solution in ethanol and water with aqueous solution of Fe-chloride or Fe-acetate. The coating solution was deposited on Si substrates by spin on technique. The size of Fe-containing nanometric-sized particles depended on technology and varied from 20 to 100 nm. Optical response of complex hybrid samples SiO2:Fe/Si was interpreted in a multi-layer model. In the inverse problem, the Maxwell equations were solved by transfer matrix technique. Dielectric function of Fe-doped silica layers was calculated in the model of effective media. Analysis of optical data has shown that various Fe-oxides formed. Experimental data for films obtained from precursors with Fe-acetate and annealed in hydrogen were well described by the model calculations taking into account a small contribution 1-5% of metal Fe imbedded in silica. The Fe/Fe-O contribution to optical response increased for samples grown from FeCl3-precursor. Ellipsometric data for Fe-doped silica films on Si were interpreted taking into account the structural AFM studies as well as the results of magnetic measurements.  相似文献   

10.
The effects of Ar microwave plasma treatment on field emission properties of the printed carbon nanotubes (CNTs) cathode films using Ag nano-particles as binder were investigated. The field emission J-E characteristics were measured at varied plasma treatment time. Significant improvement in emission current density, emission stability and uniformity were achieved for the Ar treated CNTs films, even though the plasma treatment increased the turn on electric field slightly. High-resolution transmission electron microscopy (HRTEM) and Raman spectroscopy revealed the microstructural changes of CNTs after the plasma treatment. The improved field emission properties of CNTs film can be attributed to the generation of a high density of structural defects after treatment, which increased greatly the possible emission active sites. Besides, the formation of the sharpened and open-ended CNTs tips is all helpful for improving the field emission properties of the treated CNTs.  相似文献   

11.
We study the structural properties of the surface roughness, the surface mound size and the interfacial structure in Ni thin films vacuum-deposited on polyethylene naphthalate (PEN) organic substrates with and without the application of magnetic field and discuss its feasibility of fabricating quantum cross (QC) devices. For Ni/PEN evaporated without the magnetic field, the surface roughness decreases from 1.3 nm to 0.69 nm and the surface mound size increases from 32 nm to 80 nm with the thickness increased to 41 nm. In contrast, for Ni/PEN evaporated in the magnetic field of 360 Oe, the surface roughness tends to slightly decrease from 1.3 nm to 1.1 nm and the surface mound size shows the almost constant value of 28-30 nm with the thickness increased to 35 nm. It can be also confirmed for each sample that there is no diffusion of Ni into the PEN layer, resulting in clear Ni/PEN interface and smooth Ni surface. Therefore, these experimental results indicate that Ni/PEN films can be expected as metal/insulator hybrid materials in QC devices, leading to novel high-density memory devices.  相似文献   

12.
We report here an experimental observation of field emission from arrays of multiwall carbon nanotubes. Current densities in the range 10–30 mA/cm2 with excellent long-term stability were recorded. A detailed study of the destruction of nanotubes at extreme operation conditions is performed. We established that field evaporation of nanotubes accompanies field emission from a cold cathode at electric fields higher than 2 V/?. Electron microscopy of the evaporation products reveals irregularly shaped carbon nanoparticles with a hollow core. The diameter of the particles is ∼20 nm. A mechanism of the process is proposed and discussed. Received: 6 October 2000 / Accepted: 28 April 2001 / Published online: 27 June 2001  相似文献   

13.
Plasma-enhanced chemical vapor deposition (PECVD) method was employed to synthesize the Fe-catalyzed carbon nanotubes (CNTs). Hf films were deposited onto the synthesized CNTs, followed by heat treatment at 1200 °C which could form HfC. Field emission properties indicate that the HfC-coated CNTs have good emission current density due to low work function of HfC and also keep stable emission characteristics under poor vacuum owing to the chemical inertness of HfC. Consequently, field emission characteristics of the CNTs can be improved by the HfC-coated surface treatment compared with the synthesized CNTs.  相似文献   

14.
The work addresses the correlation between the phase composition and the magnetic characteristics of aligned Fe-filled multi-walled carbon nanotubes (Fe-MWCNTs) grown by pyrolysis of ferrocene on oxidized Si substrates. In a combinatorial approach we exploited the extremely high gradients of the technological parameters temperature and ferrocene flow across the surface of a substrate positioned close to the reactor wall to obtain a large variation in the structural and magnetic properties of the Fe-MWCNTs. In this way, we established several clear correlations between the Fe-filling phase composition and the overall magnetic characteristics of the aligned Fe-MWCNTs. The α-Fe rich samples, which possess a more ordered graphitic sheet structure, a higher degree of preferred crystalline orientation of the metal filling and much larger metal crystallites in comparison with the carbide-rich samples, show a much stronger magnetic anisotropy with easy axis perpendicular to the substrate and unusually high values of the coercive field Hc and the saturation field Hs. The changes in the measured saturation magnetisation Ms and the Hc values correlate well with the variation of the α-Fe content and the filling crystallinity. A special annealing treatment of the samples causes a distinct increase of the α-Fe quantity and an increase of the measured average grain size. The respective magnetic characteristics show a significant increase of the overall magnetic moment and decrease of the coercive field. The correlation between the structural and the magnetic characteristics of the annealed samples matches quite well the respective correlations in the case of as-deposited samples.  相似文献   

15.
Carbon nanotubes (CNTs) were modified by depositing a thin layer of titanium film on the surface using magnetron sputtering method, followed by vacuum annealing at 900 °C for 2 h. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) confirmed that the as-deposited thin titanium film reacted with carbon atoms to form titanium carbide after annealing. The experiment results show that the thickness of sputter-deposited titanium film has significant effect on the field emission J-E characteristic of modified CNTs film. The titanium carbide-modified CNTs film obtained by controlling the titanium sputtering time to 2 min showed an improved field emission characteristics with a significant reduction in the turn-on electric field and an obvious increase in the emission current density as well as an improvement in emission stability. The improvement of field emission characteristics achieved is attributed to the low work function and good resistance to ion bombardment of titanium carbide.  相似文献   

16.
Ester-functionalized soluble single-walled carbon nanotubes   总被引:2,自引:0,他引:2  
We report the preparation of soluble ester- functionalized single-wall carbon nanotubes (sSWNT-COO(CH2)17CH3). By use of solution phase IR spectroscopy we are able to compare the ratio of the carbon atoms in the SWNT backbone to the carbon atoms in the ester and amide functionalities of s-SWNTs. Received: 16 July 2001 / Accepted: 3 December 2001 / Published online: 4 March 2002  相似文献   

17.
Effect of temperature and aspect ratio on the field emission properties of vertically aligned carbon nanofiber and multiwalled carbon nanotube thin films were studied in detail. Carbon nanofibers and multiwalled carbon nanotube have been synthesized on Si substrates via direct current plasma enhanced chemical vapor deposition technique. Surface morphologies of the films have been studied by a scanning electron microscope, transmission electron microscope and an atomic force microscope. It is found that the threshold field and the emission current density are dependent on the ambient temperature as well as on the aspect ratio of the carbon nanostructure. The threshold field for carbon nanofibers was found to decrease from 5.1 to 2.6 V/μm when the temperature was raised from 300 to 650 K, whereas for MWCNTs it was found to decrease from 4.0 to 1.4 V/μm. This dependence was due to the change in work function of the nanofibers and nanotubes with temperature. The field enhancement factor, current density and the dependence of the effective work function with temperature and with aspect ratio were calculated and we have tried to explain the emission mechanism.  相似文献   

18.
Microscopic growth mechanisms for carbon and boron-nitride nanotubes   总被引:1,自引:0,他引:1  
Received: 27 November 1998 / Accepted: 18 December 1998  相似文献   

19.
Guili Yu 《Physics letters. A》2008,372(10):1712-1716
The linear polarizability absorption spectra of semiconducting carbon nanotubes under axial magnetic field (B) have been calculated by the π-orbital tight-binding model and sum-over-state method. We have found that the optical spectra are split by the B-induced symmetry breaking and the amount of splitting increases with increase of magnetic field. Although the results are obtained within the noninteracting tight-binding model, the amount of splitting is still consistent with the experimental observation, offering a fast estimation of the B-induced splitting. Our numerical results also indicate that the splitting amounts of the second and third absorption peaks are close to that of the first one, which may be observed by the future experiments.  相似文献   

20.
Manipulation of carbon nanotubes (CNTs) by an atomic force microscope (AFM) and soldering of CNTs using Fe oxide nanoparticles are described. We succeeded to separate a CNT bundle into two CNTs or CNT bundles, to move the separated CNT to a desirable position, and to bind it to another bundle. For the accurate manipulation, load of the AFM cantilever and frequency of the scan were carefully selected. We soldered two CNTs using an Fe oxide nanoparticle prepared from a ferritin molecule. The adhesion forces between the soldered CNTs were examined by an AFM and it was found that the CNTs were bound, though the binding force was not strong.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号