首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carrier mobifity enhancement from 0.09 to 0.59cm2/Vs is achieved for pentacene-based thin-film transistors (TFTs) by modifying the Hf02 gate dielectric with a polystyrene (PS) thin film. The improvement of the transistor's performance is found to be strongly related to the initial film morphologies of pentacene on the dielectrics. In contrast to the three-dimensional island-like growth mode on the HI02 surface, the Stranski- Krastanov growth mode on the smooth and nonpolar PS/HfO2 surface is believed to be the origin of the excellent carrier mobility of the TFTs. A large well-connected first monolayer with fewer boundaries is formed via the Stranski-Krastanov growth mode, which facilitates a charge transport parallel to the substrate and promotes higher carrier mobility.  相似文献   

2.
We report on the fabrication of pentacene thin-film transistors (TFTs) utilizing a spun methyl siloxane-based spin-on-glass (SOG) dielectric and show that these devices can give a similar electrical performance as achieved by using pentacene TFTs with a silicon dioxide (SiO2) dielectric. To improve the electrical performance of pentacene TFTs with the SOG dielectric, we employed a hybrid dielectric of an SOG/cross-linked poly-4-vinylphenol (PVP) polymer. The PVP film was deposited onto the spun SOG dielectric prior to pentacene evaporation, resulting in an improvement of the saturation field effect mobility (μsat) from 0.01 cm2/(V s) to 0.76 cm2/(V s). The good surface morphology and the matching surface energy of the SOG dielectric that was modified with the polymer thin film allow the optimized growth of crystalline pentacene domains whose nuclei are embedded in an amorphous phase.  相似文献   

3.
In this work, ZnO thin films with different thickness were prepared by sol-gel method on glass substrates and the structural and optical properties of these films were studied by X-ray diffractometer, atomic force microscope, UV-visible spectrophotometer, ellipsometer and fluorophotometer, respectively. The structural analyses show that all the samples have a wurtzite structure and are preferentially oriented along the c-axis perpendicular to the substrate surface. The growth process of highly c-axis oriented ZnO thin films derived from sol-gel method is a self-template process. With the increase of film thickness, the structural disorder decreases and the crystalline quality of the films is gradually improved. A transition of crystal growth mode from vertical growth to lateral growth is observed and the transition point is found between 270 and 360 nm thickness. The optical analyses show that with the increase of film thickness, both the refractive index and ultraviolet emission intensity are improved. However, the transmittance in the visible range is hardly influenced by the film thickness, and the averages are all above 80%.  相似文献   

4.
The results reported concern the characterization of thin layer SiO2-based matrices with an oxygen sensing component Ru(II)-tris(4,7-diphenyl-1,10-phenanthroline) immobilized, when a sol-gel process along with dip- and spin-coating deposition methods are used.SEM, TEM and AFM study, assisted by X-ray energy dispersive microanalysis reveals the influence of the precursors used, sol treatment and the coating conditions on the films morphology and Ru distribution in the matrices. Uniform and smooth surface is produced from tetraethoxysilane (TEOS). The presence of ormosils (methyltriethoxysilane, MtEOS and octyltriethoxysilane, OtEOS) significantly increases the surface roughness exhibited as dots on the SEM image. Their surface concentration and size depend on the number of immersions and withdrawal speed at the dip coating. Spin deposition leads to rather different morphology of the films, based on TEOS/OtEOS. Following commonly used sol preparation procedure (with 1.25-2.5 g Ru-complex/dm3 sol) microcrystallization of the complex occurs with formation of randomly distributed crystals 100-400 nm in size. The ultrasound treatment of the sol by means of ultrasound disintegrator leads to homogeneous distribution of the complex without observable crystallization and significant improvement of the film sensing properties (increase of Stern-Volmer constant and better linearity of the Stern-Volmer plots both in gaseous and aqueous media).  相似文献   

5.
We report on zinc oxide (ZnO) thin films (d = 55-120 nm) prepared by thermal oxidation, at 623 K, of metallic zinc films, using a flash-heating method. Zinc films were deposited in vacuum by quasi-closed volume technique onto unheated glass substrates in two arrangements: horizontal and vertical positions relative to incident vapour. Depending on the preparation conditions, both quasi-amorphous and (0 0 2) textured polycrystalline ZnO films were obtained. The surface morphologies were characterized by atomic force microscopy and scanning electron microscopy. By in situ electrical measurements during two heating-cooling cycles up to a temperature of 673 K, an irreversible decrease of electrical conductivity of as flash-oxidized Zn films was revealed. The influence of deposition arrangement and oxidation conditions on the structural, morphological and electrical properties of the ZnO films is discussed.  相似文献   

6.
Zinc oxide films of 40 nm thickness have been deposited on glass substrates by pulsed laser deposition using an excimer XeCl laser (308 nm) at different substrate temperatures ranging from room temperature to 650 °C. Surface investigations carried out by using atomic force microscopy have shown a strong influence of temperature on the films surface topography. UV-VIS transmittance measurements have shown that our ZnO films are highly transparent in the visible wavelength region, having an average transmittance of ∼90%. The optical band gap of the films was found to be 3.26 eV, which is lower than the theoretical value of 3.37 eV. Besides the normal absorption edge related to the transition between the valence and the conduction band, an additional absorption band was also recorded in the wavelength region around 364 nm (∼3.4 eV). This additional absorption band may be due to excitonic, impurity, and/or quantum size effects. Photoreduction/oxidation in ozone of the ZnO films lead to larger conductivity changes for higher deposition temperature. In conclusion, the ozone sensing characteristics as well as the optical properties of the ZnO thin films deposited by pulsed laser deposition are strongly influenced by the substrate temperature during growth. The sensitivity of the films towards ozone might be enhanced significantly by the control of the films deposition parameters and surface characteristics.  相似文献   

7.
S. Pal 《Applied Surface Science》2007,253(6):3317-3325
Tungsten oxide (WO3) thin films were deposited by a modified hot filament chemical vapor deposition (HFCVD) technique using Si (1 0 0) substrates. The substrate temperature was varied from room temperature to 430 °C at an interval of 100 °C. The influence of the substrate temperature on the structural and optical properties of the WO3 films was studied. X-ray diffraction and Raman spectra show that as substrate temperature increases the film tends to crystallize from the amorphous state and the surface roughness decreases sharply after 230 °C as confirmed from AFM image analysis. Also from the X-ray analysis it is evident that the substrate orientation plays a key role in growth. There is a sharp peak for samples on Si substrate due to texturing. The film thickness also decreases as substrate temperature increases. UV-vis spectra show that as substrate temperature increases the film property changes from metallic to insulating behavior due to changing stoichiometry, which was confirmed by XPS analysis.  相似文献   

8.
Silver selenide thin films were grown on silicon substrates by the solid-state reaction of sequentially deposited Se and Ag films of suitable thickness. Transmission electron microscopy and particle-induced X-ray emission studies of the as-deposited films showed the formation of single phase polycrystalline silver selenide from the reaction of Ag and Se films. Atomic force microscopy images of the as-deposited and films annealed at different temperatures in argon showed the film morphology to evolve into an agglomerated state with annealing temperature. The results indicate that when annealed above 473 K, silver selenide films on silicon become unstable and agglomerate through holes generated at grain boundaries.  相似文献   

9.
In this paper we report on the realization of flexible all-organic ambipolar field-effect transistors (FETs) realized on unconventional substrates, such as plastic films and textile yarns. A double layer pentacene-C60 heterojunction was used as the semiconductor layer. The contacts were made with poly(ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) and patterned by means of soft lithography microcontact printing (μCP). Very interestingly growing C60 on a predeposited pentacene buffer layer leads to a clear improvement in the morphology and crystallinity of the film so it obtains n-type conduction despite the very high electron injection barrier at the interface between PEDOT:PSS and C60. As a result, it was possible to obtain all-organic ambipolar FETs and to optimize their electrical properties by tuning the thicknesses of the two employed active layers. Moreover, it will be shown that modifying the triple interface between dielectric/semiconductor/electrodes is a crucial point for optimizing and balancing injection and transport of both kinds of charge carriers. In particular, we demonstrate that using a middle contact configuration in which source and drain electrodes are sandwiched between pentacene and C60 layers allows significantly improving the electrical performance in planar ambipolar devices. These findings are very important because they pave the way for the realization of low-cost, fully flexible and stretchable organic complementary circuits for smart wearable and textile electronics applications.  相似文献   

10.
In this work, ZnO thin films were prepared by sol-gel method and the effect of aging time of ZnO sol on the structural and optical properties of the films was studied. The structural characteristics of the samples were analyzed by an atomic force microscope and an X-ray diffractometer. The optical properties were studied by a UV-vis spectrophotometer and a fluorophotometer. The results show that the ZnO thin film prepared by the as-synthesized ZnO sol had relatively poor crystalline quality, low optical transmittance in the visible range and relatively weak ultraviolet emission performance. After the as-synthesized ZnO sol was aged for 24 h, the degree of the preferred crystal orientation along the c-axis of the ZnO thin film prepared by this aged sol was improved. At the same time, this film had a very smooth surface with uniform grains and both its visible range transmittance and ultraviolet emission intensity were obviously increased. These results suggest that appropriate aging of ZnO sol is very important for the improvement of structural and optical quality of ZnO thin films derived from sol-gel method.  相似文献   

11.
The bias stress effect in pentacene organic thin-film transistors has been investigated. The transistors utilize a thin gate dielectric based on an organic self-assembled monolayer and thus can be operated at low voltages. The bias stress-induced threshold voltage shift has been analyzed for different drain-source voltages. By fitting the time-dependent threshold voltage shift to a stretched exponential function, both the maximum (equilibrium) threshold voltage shift and the time constant of the threshold voltage shift were determined for each drain-source voltage. It was found that both the equilibrium threshold voltage shift and the time constant decrease significantly with increasing drain-source voltage. This suggests that when a drain-source voltage is applied to the transistor during gate bias stress, the tilting of the HOMO and LUMO bands along the channel creates a pathway for the fast release of trapped carriers.  相似文献   

12.
Gang Li  Jing Lu 《Applied Surface Science》2009,255(16):7323-7328
Well-ordered TiO2 nanotube arrays were prepared by electrochemical anodization of titanium in aqueous electrolyte solution of H3PO4 + NH4F at a constant voltage of 20 V for 3 h, followed by calcined at various temperatures. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and Photoluminescence (PL) were used to characterize the samples. The results showed that the as-prepared nanotube arrays before being calcined were amorphous and could transform to anatase phase at a heat treatment temperature higher than 400 °C. As the calcination temperatures increased, crystallization of anatase phase enhanced and rutile phase appeared at 600 °C. However, further increasing the calcination temperature would cause the collapse of nanotube arrays. PL intensity of the nanotube arrays annealed at 500 °C was the lowest, which was probably ascribed to better crystallization together with fewer surface defects of the nanotube arrays.  相似文献   

13.
Transparent zinc oxide (ZnO) thin films with a thickness from 10 to 200 nm were prepared by the PLD technique onto silicon and Corning glass substrates at 350 °C, using an Excimer Laser XeCl (308 nm). Surface investigations carried out by atomic force microscopy (AFM) and X-ray diffraction (XRD) revealed a strong influence of thickness on film surface topography. Film roughness (RMS), grain shape and dimensions correlate with film thickness. For the 200 nm thick film, the RMS shows a maximum (13.9 nm) due to the presence of hexagonal shaped nanorods on the surface. XRD measurements proved that the films grown by PLD are c-axis textured. It was demonstrated that the gas sensing characteristics of ZnO films are strongly influenced and may be enhanced significantly by the control of film deposition parameters and surface characteristics, i.e. thickness and RMS, grain shape and dimension.  相似文献   

14.
For the design and manufacture of complex integrated circuits, control over the threshold voltage of the transistors is essential. In the present contribution, we present a non-invasive method to tune the threshold voltage of organic thin-film transistors after device assembly over a wide range without any significant degradation of the device characteristics. This is realized by incorporating a thin, chemically reactive siloxane layer bonded to the gate oxide. This results in threshold voltages of around 70 V in the as-prepared devices. By exposing a transistor modified in this way to ammonia at different concentrations, the threshold voltage can be tuned in steps of only a few volts. This treatment affects only the charge density at the semiconductor–dielectric interface, leaving the overall shape of the transistor characteristics and the charge-carrier mobility largely unaltered.  相似文献   

15.
Polymer thin-film transistors (PTFTs) based on poly(2-methoxy-5-(2′-ethyl-hexyloxy)-1,4-phenylene vinylene) (MEH-PPV) semiconductor are fabricated by spin-coating process and characterized. In the experiments, solution preparation, deposition and device measurements are all performed in air for large-area applications. Hysteresis effect and gate-bias stress effect are observed for the devices at room temperature. The saturation current decreases and the threshold voltage shifts toward the negative direction upon gate-bias stress, but carrier mobility hardly changes. By using quasi-static C-V analysis for MOS capacitor structure, it can be deduced that the origin of threshold-voltage shift upon negative gate-bias stress is predominantly associated with hole trapping within the SiO2 gate dielectric near the SiO2/MEH-PPV interface due to hot-carrier emission.  相似文献   

16.
We investigated the effect of surface property of polyimide substrate on the formation of pentacene thin-film by using atomic force microscopy (AFM) and X-ray reflectivity (XRR) and diffuse scattering (XDS). Two types of polymer films were prepared: (1) polyimide (PAA-PI) from poly(amic acid) (PAA) (2) polyimide hybrid (PAA-PI-H) prepared by hybridizing the PAA and soluble polyimide (PI) with a octadecyl side chain. The hybridization ratio of PI to PAA was 2/98 in wt%. The water contact angle for PAA-PI-H and PAA-PI were around 80° and 64°, respectively. Morphology of pentacene with a ropelike structure and (1 1 0) peak around 1.4 Å in qz was found when it was deposited on PAA-PI thin-film. Different pentacene morphology was observed when it was deposited on PAA-PI-H thin-film. The different morphology might be due to a 5-6 nm thick additional layer (∼0.95 ρfilm) at the interface between pentacene and PAA-PI-H thin-film caused by a long alkyl side chain introduced to the polymer main chain.  相似文献   

17.
N-doped ZnO films were produced using N2 as N source by metal-organic chemical vapor deposition (MOCVD) system which has been improved with radio-frequency (RF)-assisted equipments. The data of secondary ion mass spectroscopy (SIMS) indicate that the concentration of N in N-doped ZnO films is around 5 × 1020 cm−3, implying that sufficient incorporation of N into ZnO can be obtained by RF-assisted equipment. On this basis, the structural, optical and electrical properties of Al-N codoped ZnO films were studied. Then, the effect of RF power on crystal quality, surface morphologies, optical properties was analyzed using X-ray diffraction, atomic force microscopy and photo-luminescence methods. The results illustrate that the RF plasma is the key factor for the improvement of crystal quality. Then the observation of A0X recombination associated with NO acceptor in low-temperature PL spectrum proved that some N atoms have occupied the positions of O atoms in ZnO films. Hall measurements shown that p-type ZnO film deposited on quartz glasses was obtained when RF power was 150 W for the Al-N codoped ZnO films, while the resistivity of N-doped ZnO films was rather high. Compared with the Al-doped ZnO film, the obviously increased resistivity of codoped films indicates that the formation of NO acceptors compensate some donors in ZnO films effectively.  相似文献   

18.
The thermal stability of SiGe films on an ultra thin Ge buffer layer on Si fabricated at low temperature has been studied. The microstructure and morphology of the samples were investigated by high-resolution X-ray diffraction, Raman spectra and atomic force microscopy, and using a diluted Secco etchant to reveal dislocation content. After thermal annealing processing, it is observed that undulated surface, threading dislocations (TDs) and stacking faults (SFs) appeared at the strained SiGe layer, which developed from the propagation of a misfit dislocation (MD) during thermal annealing, and no SFs but only TDs formed in strain-relaxed sample. And it is found that the SiGe films on the Ge layer grown at 300 °C has crosshatch-free surface and is more stable than others, with a root mean square surface roughness of less than 2 nm and the threading dislocation densities as low as ∼105 cm−2. The results show that the thermal stability of the SiGe films is associated with the Ge buffer layer, the relaxation extent and morphology of the SiGe layer.  相似文献   

19.
In this paper, we have performed ab initio density functional theory calculations to compare the miscibility and magnetic properties of two-dimensional binary surface alloys of the form MxN1−x (M = Fe or Co; N = Pt, Au, Ag, Cd or Pb) on two different substrates - Rh(1 1 1) and Ru(0 0 0 1). The trends in miscibility for the two substrates are found to be strikingly similar. The magnetic moments show qualitatively similar behavior, but their magnitudes differ: surface alloys on Rh(1 1 1) have larger magnetic moments than on Ru(0 0 0 1). We infer that strain plays the determining role in stabilizing these two-dimensional alloys, whereas the differences in magnetic moments can be ultimately attributed to the different number of d-electrons in Rh and Ru.  相似文献   

20.
A novel cross-linkable copolymer for the gate insulators of organic thin-film transistors (OTFTs) was synthesized by free radical copolymerization with methyl methacrylate and ethylene methylacrylate cinnamoylate. Copolymers of molecular weights (Mn: 109200–160000 g mol−1) and polydispersities (1.59–2.24) were characterized by FTIR and NMR. Spin-coated thin films had smooth surfaces with the root-mean-square (RMS) surface roughness of 0.23 nm, 0.41 nm, respectively, before and after UV irradiation. Exposure of the copolymers to UV light produced cross-linking of the polymeric chains that could be confirmed by comparing the FTIR and UV spectra recorded prior and after irradiation. Moreover, the vanadyl-phthalocyanine (VOPc) OTFTs with the photosensitive copolymer as gate insulator were fabricated and found to exhibit a carrier mobility of 0.25 cm2/V s, an on/off ratio of 104.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号