首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on the fabrication of single phase of the Si(1 1 1)-(√31 × √31)-In reconstruction surface, observed by scanning tunneling microscopy (STM) at room temperature. By depositing specific amounts of indium atoms while heating the Si(1 1 1)-(7 × 7) substrate at a critical temperature, the single phase of Si(1 1 1)-(√31 × √31)-In surfaces could be routinely obtained over the whole surface with large domains. This procedure is certified by our high-resolution STM images in the range of 5-700 nm. Besides, the high resolution STM images of the Si(1 1 1)-(√31 × √31)-In surface were also presented.  相似文献   

2.
Si(1 1 0) surfaces covered with small amounts of In deposit and then annealed at high temperature were investigated by RHEED, and two kinds of superstructures with A = 3a and B = −a + 4b, and A = 3a − 2b and B = −2a + 4b as primitive translational vectors are reported to form on the surfaces.  相似文献   

3.
Scanning tunnelling microscopy was used to investigate the structural formation of methylthiolate self-assembled monolayers on Au(1 1 1). SAMs were prepared by exposing the gold crystal to an ethanol-dimethyldisulfide solution for immersion times of 12 min, 12 h, and 24 h. After preparation the formation of a () rect. striped phase was found. For this phase, the immersion time is the key parameter determining the size and number of ordered domains. Annealing induced a phase transition leading to large domains in a (3×4) structure. The annealing temperature determines whether a mixed phase of both structures or only the (3×4) structure are formed. We find no influence of the immersion time on the formation of the second structure. A structure model is presented for both phases on the basis on the same building block containing two methylthiolate molecules and a gold ad-atom.  相似文献   

4.
Ba-induced quasi-one-dimensional reconstructions of the Si(1 1 1) surface have been investigated by low energy electron diffraction (LEED) and scanning tunneling microscopy (STM). While the 3 × ‘2’ surface shows double-periodicity along the stripes in STM images consistent with half-order streaks observed in LEED patterns, no sign of the double-periodicity along the chain direction was detected for the 5 × 1 surface. The 5× stripes in STM images show internal structures with multiple rows. The two rows comprising the boundaries of a 5× stripe in the filled-state STM image are found to have 3a × √3/2 spacing across the stripe. The observation of the successive 3× and 2× spacings between the boundary rows supports a structural model proposed for the Ba-induced 5 × 1 Si reconstruction composed of honeycomb chains and Seiwatz chains. The highest coverage 2 × 8 surface does not reveal a quasi-1D row structure in STM images.  相似文献   

5.
We report the reaction dynamics of cobalt phthalocyanine (CoPc) molecules with Bi-line structures (BLSs) on a Si(1 0 0) surface, investigated using scanning tunneling microscopy (STM). When CoPc molecules were deposited on a Si(1 0 0) surface with BLSs at room temperature, single-spot protrusions were observed in the STM image instead of four-spot images corresponding to CoPcs flat molecular structure. Moreover, domains with a c(4 × 4) periodicity appeared on the terraces of the Si(1 0 0) surface. This indicates that CoPc molecules may have decomposed on the surface by catalytic reaction with Bi atoms.  相似文献   

6.
Initial adsorption of oxygen molecules on the Si(1 1 0)-16 × 2 surface and subsequent modification of the bonding states induced by mild (300 °C) annealing have been studied by synchrotron-radiation photoemission spectroscopy and scanning-tunneling microscopy. It has been shown that upon annealing, the intensity and the energy positions of the Si 2p suboxide components shift towards the values characteristic for the thermal oxide. This indicates the presence of a metastable chemisorption state of oxygen on the Si(1 1 0)-16 × 2 surface.  相似文献   

7.
In this paper a comparative study of different wet-chemical etching procedures of vicinal Si(1 1 1) surface passivation is presented. The stability against oxidation under ambient atmosphere was studied by X-ray photoelectron spectroscopy and atomic force microscopy. The best results were achieved by the buffered HF etching and the final smoothing of the surface by hot (72 °C) NH4F. The procedures consisting of a large number of etching steps were unsatisfactory, since the probability of contamination during each step was increasing. The passivated surface was stable against oxidation for at least 3 h under ambient atmosphere.  相似文献   

8.
We studied processes of cleaning GaN(0 0 0 1) surfaces on four different types of wafers: two types were hydride vapor phase epitaxy (HVPE) free-standing substrates and two types were metal-organic chemical vapor deposition (MOCVD) films grown on these HVPE substrates and prepared by annealing and/or Ar ion sputtering in ultra high vacuum. We observed the surfaces through treatments using in situ low-energy electron diffraction (LEED), reflection high-energy electron diffraction (RHEED), scanning tunneling microscopy (STM), and Auger electron spectroscopy, and also using ex situ temperature programmed desorption, X-ray photoelectron spectroscopy, X-ray diffraction, and secondary ion mass spectrometry. For HVPE samples, we obtained relatively clean surfaces under optimized three-step annealing conditions (200 °C for 12 h + 400 °C for 1 h + 500 °C for 5 min) without sputtering, after which the surface contamination of oxide and carbide was reduced to ∼20% of that before annealing. Clear GaN(0 0 0 1)1×1 patterns were obtained by LEED and RHEED. STM images showed flat terraces of ∼10 nm size and steps of ∼0.5 nm height. Upon annealing the HVPE-GaN samples at a much higher temperature (C), three-dimensional (3D) islands with facets were formed and the surface stoichiometry was broken down with the desorption of nitrogen in the form of ammonia, since the samples include hydrogen as an impurity. Ar+ sputtering was effective for removing surface contamination, however, postannealing could not recover the surface roughness but promoted the formation of 3D islands on the surface. For MOCVD/HVPE homoepitaxial samples, the surfaces are terminated by hydrogen and the as-introduced samples showed a clear 1×1 structure. Upon annealing at 500-600 °C, the surface hydrogen was removed and a 3×3 reconstruction structure partially appeared, although a 1×1 structure was dominant. We summarize the structure differences among the samples under the same treatment and clarify the effect of crystal quality, such as dislocations, the concentration of hydrogen impurities, and the residual reactant molecules in GaN films, on the surface structure.  相似文献   

9.
The growth of Ag films on ZnO(0 0 0 −1) has been investigated by Auger electron spectroscopy (AES) and scanning tunneling microscopy (STM). A high density of islands is nucleated at the earliest stages of the growth. An upstepping mechanism causes these islands to coalesce while the uncovered fraction of the ZnO surface remains constant (30%).  相似文献   

10.
We investigated the bias voltage polarity dependence of atomically resolved barrier height (BH) images on Si(1 1 1)3 × 1-Ag surfaces. The BH images were very similar to scanning tunneling microscopy (STM) images in both the empty and filled states. This similarity strongly supports the interpretation that the BH image reflects the vertical decay rate of the surface local density of states (LDOS). Differences in contrast and protrusion shapes between BH and STM images were observed. We attributed these differences to the geometric contribution to the STM image and to the improved spatial resolution of the BH image due to the lock-in technique.  相似文献   

11.
We have studied hydrogen adsorption on the Ge(1 1 1) c(2 × 8) surface using scanning tunneling microscopy (STM) and angle-resolved photoelectron spectroscopy (ARPES). We find that atomic hydrogen preferentially adsorbs on rest atom sites. The neighbouring adatoms appear higher in STM images, which clearly indicates a charge transfer from the rest atom states to the adatom states. The surface states near the Fermi-level have been followed by ARPES as function of H exposure. Initially, there is strong emission from the rest atom states but no emission at the Fermi-level which confirms the semiconducting character of the c(2 × 8) surface. With increasing H exposure a structure develops in the close vicinity of the Fermi-level. The energy position clearly indicates a metallic character of the H-adsorbed surface. Since the only change in the STM images is the increased brightness of the adatoms neighbouring a H-terminated rest atom, we identify the emission at the Fermi-level with these adatom states.  相似文献   

12.
Scanning tunneling microscopy (STM) and spectroscopy (STS) carried out in vacuum and air were used to study the electronic structure of the Au (1 1 1) surface in the range of 0.0-0.7 eV below the Fermi level. The STS experiment carried out in UHV showed the existence of the Shockley surface state (SS) located 0.48 eV below the Fermi level. STS carried out in air showed strong local maximum located 0.35 eV below the Fermi level. This maximum was ascribed to the SS shifted toward lower energy due to carbon and oxygen overlayer. To confirm that the SS could exist on the sample exposed to air we did ultraviolet photoemission spectroscopy (UPS) experiment on air-treated and clean Au (1 1 1). Our results suggest that the SS position initially measured at 0.38 eV below the Fermi level was shifted to 0.27 eV after air treatment. Additionally, the level of contamination was measured using X-ray photoelectron spectroscopy (XPS).  相似文献   

13.
The composition and morphology of fluorinated anodic oxide (FAO) films grown on InAs (1 1 1)A in alkaline aqueous (pH 11.5) and acid waterless (pH 1.5) electrolytes are studied by means of X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and high resolution transmission electron microscopy (HRTEM) in order to reveal the passivation mechanism of fluorine on the FAO/InAs(1 1 1)A interface. The formation of the highest oxidation form of As+5 and passivation of defects in the FAO layers during the fluorination process explain the reduction of the density of surface states and unpinning of the Fermi level on the fluorinated AO/InAs(1 1 1)A interface.  相似文献   

14.
Density functional theory calculations have been applied to investigate the adsorption geometry of water overlayers on the NaCl(1 0 0) surface in the monolayer regime. Competition between H-H intermolecular repulsion and the attraction of the polar molecules to the surface ions results in the most stable structure having a 2 × 1 adsorption symmetry with an adsorption energy of 415 meV. Overlayers of 1 × 1 symmetry, as observed in experiment, have slightly lower adsorption energies. The layers are also unstable with respect to rotation of individual molecules. Multiple hydrogens/oxygens interacting with a single substrate ion can pull that ion out of the surface, although the examples considered are energetically very unfavourable. Overlayers of 1 × 1 symmetry with a coverage of one water molecule per NaCl do not have a high enough adsorption energy to wet the surface.  相似文献   

15.
The adsorption and decomposition of ethanethiol on GaN (0 0 0 1) surface have been investigated with first-principles calculations. The DFT calculations reveal that ethanethiol adsorbs dissociatively on the clean GaN (0 0 0 1) surface to form ethanethiolate and hydrogen species. An up limit coverage of 0.33 for ethanethiolate monolayer on GaN (0 0 0 1) surface is obtained and the position of the sulfur atom and the tilt angle of the thiolate chain are found to be very sensitive to the surface coverage. Furthermore, the reactivity of ethanethiol adsorption and further thermal decomposition reactions on GaN (0 0 0 1) surface is discussed by calculating the possible reaction pathways and ethene is found to be the major product.  相似文献   

16.
Using the interaction parameters up to the third neighbors and activated form of O and CO diffusion and their reaction, the model has been proposed for Monte-Carlo simulations describing the catalytic O + CO → CO2 reaction and occurring phase transitions on Pd(1 1 1) surface. Upon adsorption of CO the pre-adsorbed oxygen transforms from p(2 × 2)O phase into and phases in the limit of room and moderate temperatures, respectively. We demonstrate that the kinetic effects determine both the occurrence of the p(2 × 1)O and disappearance of the phases at moderate and low temperatures, respectively. Using reaction rate as a fit parameter, we show that at room temperature the start of the reaction can be synchronized with the occurrence of phase.  相似文献   

17.
The adsorption of diethylamine (DEA) on Si(1 0 0) at 100 K was investigated using high-resolution electron energy loss spectroscopy (HREELS) and electron stimulated desorption (ESD). The thermal evolution of DEA on Si(1 0 0) was studied using temperature programmed desorption (TPD). Our results demonstrate DEA bonds datively to the Si(1 0 0) surface with no dissociation at 100 K. Thermal desorption of DEA takes place via a β-hydride elimination process leaving virtually no carbon behind. Electronic processing of DEA/Si(1 0 0) at 100 K results in desorption of ethyl groups; however, carbon and nitrogen are deposited on the surface as a result of electron irradiation. Thermal removal of carbon and nitrogen was not possible, indicating the formation of silicon carbide and silicon nitride.  相似文献   

18.
Recently, tetramantane, a member of diamondoid series (C4n+6H4n+12), has shown to exhibit negative-electron-affinity effect which has a potential use for efficient electron emitting devices. Here, we explore the electronic property of adamantane (C10H16), the smallest member of the series. We prepare adamantane films on Si(1 1 1) substrates and then study their electronic structure with photoemission spectroscopy. Photoelectron spectra of adamantane on Si(1 1 1) have shown a peak at low-kinetic energy which could be a generic property of diamondoids. The possibility of the negative-electron-affinity effect in adamantane is further discussed.  相似文献   

19.
Pd-Cu bimetallic surfaces formed through a vacuum-deposition of Pd on Cu(1 1 1) have been discussed on the basis of carbon monoxide (CO) adsorption: CO is used as a surface probe and infrared reflection absorption (IRRAS) spectra are recorded for the CO-adsorbed surfaces. Low energy electron diffraction (LEED) patterns for the bimetallic surfaces reveal six-fold symmetry even after the deposition of 0.6 nm. The lattice spacings estimated by the separations of reflection high-energy electron diffraction (RHEED) streaks increase with increasing Pd thickness. Room-temperature CO exposures to the bimetallic surfaces formed by the Pd depositions less than 0.3 nm thickness generate the IRRAS bands due to the three-fold-hollow-, bridge- and linear-bonded CO to Pd atoms. In particular, on the 0.1 nm-thick Pd surface, the linear-bonded CO band becomes apparent at an earlier stage of the exposure. In contrast, the bridge-bonded CO band dominates the IRRAS spectra for CO adsorption on the 0.6 nm-thick Pd surface, at which the lattice spacing corresponds to that of Pd(1 1 1). A 90 K-CO exposure to the 0.1 nm-thick Pd surface leads to the IRRAS bands caused not only by CO-Pd but also by CO-Cu, while the Cu-related band is almost absent from the spectra for the 0.3 nm-thick Pd surface. The results clearly reveal that local atomic structures of the outermost bimetallic surface can be discussed by the IRRAS spectra for the probe molecule.  相似文献   

20.
One-dimensional Si quantum wires have been grown on silver single crystals upon deposition of ∼0.25 monolayer of Si on Ag(1 1 0) surfaces. Scanning tunneling microscopy (STM) clearly shows parallel 1D Si chains along the [−1 1 0] Ag crystallographic direction. Low Energy Electron Diffraction (LEED) confirms the massively parallel assembly of these selforganized Nanowires (NWs). We have characterized these nano-objects by measuring the dispersion of the NWs valence band at room temperature using Angle-Resolved PhotoEmission Spectroscopy (ARPES). Also, the Fermi Surface (FS) of the Ag(1 1 0) substrate has been mapped before and after the silicon deposition, trying to put in evidence the metallic or semiconductor character of the NWs silicon's states close to the Fermi level. Our results show the existence of well-defined quantum states associated to the silicon super-structure. Both LEED and ARUPS results confirm that the NWs have typical 1D features, however their metallic or semiconductor character could not be confirmed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号