首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
A waveguide SIS heterodyne receiver using a Nb/AlOX/Nb junction has been built for astronomical observations of molecular transitions in the frequency range 600 GHz - 635 GHz, and has been successfully used at the Caltech Submillimeter Observatory (CSO). We report double sideband (DSB) receiver noise temperatures as low as 245 K at 600 GHz -610 GHz, and near 300 K over the rest of the bandwidth. These results confirm that SIS quasiparticle mixers work well at submillimeter-wave frequencies corresponding to photon energies of at least 90% of the superconductor energy gap. In addition, we have systematically investigated the effect on the receiver performance of the overlap between first-order and second-order photon steps of opposite sign at these frequencies. The receiver noise increases by as much as 40% in the region of overlap. We infer potential limitations for operating submillimeter-wave Nb/AlOx/Nb mixers.  相似文献   

2.
A heterodyne receiver using an SIS waveguide mixer with two mechanical tuners has been characterized from 480 GHz to 650 GHz. The mixer uses either a single 0.5 × 0.5 µm2 Nb/AlOx/Nb SIS tunnel junction or a series array of two 1 µm2 Nb tunnel junctions. These junctions have a high current density, in the range 8 – 13 kA/cm2. Superconductive RF circuits are employed to tune the junction capacitance. DSB receiver noise temperatures as low as 200 ± 17 K at 540 GHz, 271 K ± 22 K at 572 GHz and 362 ± 33 K at 626 GHz have been obtained with the single SIS junctions. The series arrays gave DSB receiver noise temperatures as low as 328 ± 26 K at 490 GHz and 336 ± 25 K at 545 GHz. A comparison of the performances of series arrays and single junctions is presented. In addition, negative differential resistance has been observed in the DC I–V curve near 490, 545 and 570 GHz. Correlations between the frequencies for minimum noise temperature, negative differential resistance, and tuning circuit resonances are found. A detailed model to calculate the properties of the tuning circuits is discussed, and the junction capacitance as well as the London penetration depth of niobium are determined by fitting the model to the measured circuit resonances.  相似文献   

3.
We present a SIS mixer developed for 200 – 250 GHz band receivers of Plateau de Bure Interferometer. We demonstrate the minimum DSB receiver noise of 20 K at 220 GHz. The average receiver noise of 25 K is possible in 200 – 250 GHz range. The receiver conversion gain and output noise instability of 10−4 on the time scale of 1 minute is comparable with the Shottky receivers performance. The minimum measured SIS mixer noise of about 10 K is close to the quantum limit. The waveguide SIS mixer with a single backshort has two junction array with inductively tuned junctions. The Nb/Al Oxide/Nb SIS junctions are 2.24 μm2 each with the Josephson critical current density of 3.2 KA/cm2. The thermal properties of the SIS mixer are studied. The mixer band of the low noise operation is in a good agreement with the design requirements.  相似文献   

4.
A 40 GHz band SIS mixer receiver has been built using Nb/Al–AlOx/Nb array junctions and a 4.3 K closed cycle helium refrigerator. The minimum conversion loss of the mixer is 2±1 dB and the single sideband receiver noise temperature (TRX (SSB)) is as low as 110±10 K at 36 GHz. TRX (SSB) is almost constant in the IF bandwidth of 600 MHz. The mixer saturation level is as high as 15 nW, which is comparable to the injected LO power.Nobeyama Radio Observatory (NRO), a branch of the Tokyo Astronomical Observatory, University of Tokyo, is a cosmic radio observing facility open for outside users.  相似文献   

5.
We report on techniques to broaden the intermediate frequency (IF) bandwidth of the BerkeleyIllinoisMaryland Array (BIMA) 1mm SuperconductorInsulatorSuperconductor (SIS) heterodyne receivers by combining fixed tuned Double Side Band (DSB) SIS mixers and wideband Monolithic Microwave Integrated Circuit (MMIC) IF amplifiers. To obtain the flattest receiver gain across the IF band we tested three schemes for keeping the mixer and amplifier as electrically close as possible. In Receiver I, we connected separate mixer and MMIC modules by a 1 stainless steel SMA elbow. In Receiver II, we integrated mixer and MMIC into a modified BIMA mixer module. In Receiver III, we devised a thermally split block in which mixer and MMIC can be maintained at different temperatures–in this receiver module the mixer at 4 K sees very little of the 10–20 mW heat load of the biased MMIC at 10 K. The best average receiver noise we achieved by combining SIS mixer and MMIC amplifier is 45 50 K DSB for LO = 215–240 GHz and below 80 K DSB for LO = 205 270 GHz. Over an IF frequency band of 1 – 4 GHz we have demonstrated receiver DSB noise temperatures of 40 – 60 K. Of the three receiver schemes, we feel Receiver III shows the most promise for continued development.  相似文献   

6.
Owing to a very sharp nonlinearity in the quasiparticle currentvoltage characteristic, which fortuitously occurs on the scale of a few millivolts rather than a few volts as with semiconductor devices, superconductor/insulator/superconductor (SIS) tunnel junctions are the most sensitive detectors for heterodyne mixing at millimeter and submillimeter wavelengths. They can also provide sources of coherent local oscillator power at very high frequencies; more broadly, they have a number of interesting applications as fast, low-power logic elements and as detectors at optical wavelengths. For submillimeterwave mixers, in many ways the most demanding of these applications, the Nb/Al-oxide/Nb material system has emerged as the system of choice to frequencies of ∼ 700 GHz and beyond. Production of SIS devices requires careful attention to a number of critical microfabrication issues, and I describe here some of the insights gained from developing a process for high-quality niobium trilayers that successfully yielded small-area junctions with unusually low sub-gap leakage current.  相似文献   

7.
We have designed and fabricated a fixed tuned low noise 600-700 GHz SIS mixer. Twin junctions connected in parallel was employed in the mixer design. A short microstrip tuning structure was used to minimize the RF signal loss at frequency above the energy gap. A receiver noise temperature below 200 K (without any loss correction) in the frequency range of 630 to 660 GHz was recorded. The lowest noise temperature of the receiver was 181 K (without any loss correction) at 656 GHz.  相似文献   

8.
We have developed and tested a submillimeter waveguide SIS mixer with NbN-MgO-NbN quasiparticle tunnel junctions. The two junction array is integrated in a full NbN printed circuit. The NbN film critical temperature is 15 K and the junction gap voltage is 5 mV. The size of the junctions is 1.4 × 1.4 µm and Josephson critical current density is about 1.5 KA/cm2 resulting in junction RNC product about 40. The inductive tuning circuit in NbN is integrated with each junction in two junction array. A single non contacting backshort was tuned at each frequency in the mixer block.At 306 GHz the minimum DSB receiver noise temperature is as low as 230 K. The sources of the receiver noise and of the limits of the NbN SIS submillimeter mixer improvement are discussed.  相似文献   

9.
We present a simple method to determine the spectral response of an SIS detector in the millimeter and submillimeter wavelength range from its current response to a chopped cold-load. This direct detection response is also a good indicator of quantum efficiency and mixer noise temperature when using the SIS junction in heterodyne mode. A simple experimental setup without local oscillator, cryogenic IF-amplifier or any quasioptical interferometer allows a quick diagnosis of integrated planar impedance matching structures.  相似文献   

10.
We report the development of a low noise heterodyne receiver optimized for astronomical observations in the 650 GHz atmospheric window, and specifically for the CO(J=65) line at 691.5 GHz. The system is based on an open structure SIS heterodyne mixer pumped by a continuously tunable solid state oscillator. A niobium SIS junction double array is placed at the end of an integrated V-Antenna. For broad band impedance matching a combination of microstrip impedance transformer and radial stub was used. Receiver noise temperatures of 550 K DSB at 684 GHz were achieved at a 1.8 K physical temperature. The performance improved substantially when decreasing the temperature from 4.2 to 1.8 K. Comparison of model calculations and Fourier transform direct detection measurements of the tuning structure implies that this effect is likely due to the coincidence of operational frequency and the gap frequency of the niobium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号