首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A partially reduced molybdenum oxide (MoOx) with meso-porosity was prepared for the first time and its catalytic performance in n-heptane isomerization carried out in a fixed bed flow reactor has been studied. And the evolvement of MoOx formation has been characterized by X-ray diffraction and catalytic performance in n-heptane isomerization. The MoOx catalyst obtained from H2 reduction for 12 h, possessing a maximum pore volume at diameter ca. 4.1 nm, exhibited high activity in n-heptane isomerization. The composition of this catalyst is of the predominant MoOx phases, MoO2 phase and trace amount of metal Mo phase.  相似文献   

2.
A Promising MoO_x-based Catalyst for n-Heptane Isomerization   总被引:1,自引:0,他引:1  
The increasing demand for higher-octane gasoline and the regulations limiting the amount of aromatics in the fuel motivate the interest in catalytic isomerization of n-alkanes. In the last ten years, transition metal oxides or oxycarbides based on molybdenum or tungstate have attracted much attention due to their high activity and isomerization selectivity compared to the conventional bifunctional supported platinum catalyst and high resistance to sulphur and nitrogen catalyst poisons1-5. Ma…  相似文献   

3.
以纯的单斜氧化锆(m-ZrO2)和四方氧化锆(t-ZrO2)为载体,采用浸渍法分别合成了具有不同MoOx表面密度的MoOx/m-ZrO2和MoOx/t-ZrO2催化剂,并结合粉末X射线衍射,Raman光谱和H2程序升温还原等技术表征了不同ZrO2晶相对MoOx分散状态、结构以及甲醇氧化反应性能的影响.在低于锆表面MoOx的单层分散阈值(~5nm-2)时,m-ZrO2比t-ZrO2能够更有效地分散MoOx,形成高分散的孤立或二维结构的MoOx物种,避免了晶相MoO3的出现.当Mo表面密度超过单层分散阈值后,经过600℃焙烧,MoOx与ZrO2载体发生固相反应生成晶相ZrMo2O8,m-ZrO2比t-ZrO2更有利于ZrMo2O8的生成.提高Mo表面密度,催化剂表面的酸性随之增强,说明晶相ZrMo2O8比分散的MoOx物种具有更强的酸性.t-ZrO2与MoOx作用形成的强酸中心更有利于催化甲醇脱水生成二甲醚,但m-ZrO2使得MoOx具有更高的氧化还原能力和催化甲醇选择氧化反应的活性.ZrO2晶相对MoOx/ZrO2催化剂影响的研究结果将有助于研究VOx等其它金属氧化物催化剂以及发展酸性和氧化还原性双功能催化剂体系.  相似文献   

4.
The dynamics of n-heptane isomerization on the reduced MoO3 catalyst have been studied in a fixed bed flow reactor. In the reaction temperature ranging from 523 to 673 K, the apparent energy for n-heptane isomerization obtained from the Arrhenius plot was 49.3 kJ/mol. At 573 K, the reaction orders of 0.33 in n-heptane and 0.35 in H2 have been obtained.  相似文献   

5.
MoO3 transformations under isomerization process conditions were studied. The products obtained after different times under stream (H2/n-heptane mixture, 18.5 bar, at 370 degrees C) were characterized by X-ray diffraction, Raman spectroscopy, thermal analysis, and high-resolution transmission electron microscopy (HRTEM). Theoretical quantum calculations were carried out with the aim of understanding the paradox of the real active phase in isomerization reactions. Theoretical calculations predict the existence of a metallic-like MoO phase with a structure that matches the X-ray diffraction experimental results. From experimental and simulated HRTEM images it was possible to identify the presence of small MoO cubic crystallites inside MoOx matrix phases. These results also support the previously proposed idea that isomerization reactions take place as a result of the existence of a bifunctional catalyst. The Raman and thermo-programmed oxidation (TPO) analyses show the existence of at least two types of carbonaceous deposits which tend to increase its ordering with the increase of time under stream. The carbon K edge in electron energy loss spectroscopy (EELS) of a sample after 24 h under stream shows that these carbonaceous deposits consist of a mixture of sp2- and sp3-hybridized carbons.  相似文献   

6.
The synthesis, characterization, and hemithioacetal isomerization reactivity of a mononuclear Ni(II) deprotonated amide complex, [(bppppa-)Ni]ClO4.CH3OH (1, bppppa- = monoanion of N,N-bis-[(6-phenyl-2-pyridyl)methyl]-N-[(6-pivaloylamido-2-pyridyl)methyl]amine), are reported. Complex 1 was characterized by X-ray crystallography, 1H NMR, UV-vis, FTIR, and elemental analysis. Treatment of 1 with an equimolar amount of the hemithioacetal PhC(O)CH(OH)SCD3 in dry acetonitrile results in the production of the thioester PhCH(OH)C(O)SCD3 in approximately 60% yield. This reaction is conveniently monitored via 2H NMR spectroscopy. A protonated analogue of 1, [(bppppa)Ni](ClO4)2 (2), is unreactive with the hemithioacetal, thus indicating the requirement of the anionic chelate ligand in 1 for hemithioacetal isomerization reactivity. Complex 1 is unreactive with the thioester product, PhCH(OH)C(O)SCD3, which indicates that the pKa value for the PhCH(OH)C(O)SCD3 proton of the thioester must be significantly higher than the pKa value of the C-H proton of the hemithioacetal (PhC(O)CH(OH)SCD3). Complex 1 is the first well-characterized Ni(II) coordination complex to exhibit reactivity relevant to Ni(II)-containing E. coli glyoxalase I. Treatment of NiBr2.2H2O with PhC(O)CH(OH)SCD3 in the presence of 1-methylpyrrolidine also yields thioester product, albeit the reaction is slower and involves the formation of multiple -SCD3 labeled species, as detected by 2H NMR spectroscopy. The results of this study provide the first insight into hemithioacetal isomerization promoted by a synthetic Ni(II) coordination complex versus a simple Ni(II) ion.  相似文献   

7.
分别以浸渍法和分步浸渍法制备了Ni/SAPO-11催化剂和Ni-Sn/SAPO-11双金属催化剂,利用XRD、F T-IR、NH_3-TPD、Py-IR、SEM等手段对其进行了表征,考察了Sn含量对分子筛结构和酸性的影响,并以正庚烷临氢异构化为探针反应,考察了Sn含量及反应条件对催化剂临氢异构化性能的影响.结果表明,在我们所考察的Sn含量范围(加入锡含量)内,所制备的催化剂均能保持SAPO-11分子筛晶相,金属Sn均可调节催化剂酸性.加入Sn可以明显提高正庚烷的转化率和异庚烷的选择性,其中,在氢烃比n(H_2)/n(n-C_7H_(16))为14、H_2流速为30m L/min、还原温度为430℃、还原时间为5 h、反应温度为300℃、反应时间为5 h、重时空速(WHSV)为6.8 h-1、反应压力为常压条件下,5%Ni-4%Sn/SAPO-11催化剂的催化性能较佳,其正庚烷转化率可达43%,异庚烷的选择性可达71%.  相似文献   

8.
The surface area and the pentane isomerization activity of Pt/MoO3 were enlarged by H2 reduction. The enlargements was observed only when the reduction proceeded through the formation of hydrogen molybdenum bronze, HxMoO3. The catalytic activities of H2-reduced MoO3 with different noble metals for pentane isomerization and 2-propanol dehydration depended on the ability of noble metal to produce the HxMoO3 phases. H2-reduced Pt/MoO3 was more active for pentane isomerization than Pt/H, and its activity was comparable to that of Pt/HZSM-5. In heptane isomerization, H2-reduced Pt/MoO3 exhibited a lower activity than Pt/H, although heptane was isomerized very selectively. Strong adsorption of heptane onto H2-reduced Pt/MoO3 is likely to be a reason for its lower heptane isomerization activity.  相似文献   

9.
In this B3 LYP model study, homoleptic nickel(0) ethyne complexes have been predicted as the catalyst resting state for the title reaction. Ethyne ligand coupling of Ni(C(2)H(2))(3) yields monoethyne nickelacyclopentadiene in the rate-determining step. Ethyne coordination is followed by insertion of an ethyne ligand into the Ni--C sigma bond. A highly strained monoethyne trans-nickelacycloheptatriene is formed. This trans intermediate is unable to reductively eliminate benzene without prior isomerization to a cis-structure. Instead, it rapidly collapses to a nickelacyclononatetraene. Ethyne coordination induces reductive elimination to the cyclooctatetraene complex Ni(eta(2)-C(2)H(2))(eta(2)-C(8)H(8)), followed by facile ligand exchange. Other ethyne coupling pathways have been computed to be less favored. The cyclooctatetraene ligand binds significantly weaker to nickel(0) than ethyne, both for mononuclear, and for dinuclear species. For this reason, C--C bond formation steps at Ni(2)(micro-cot) fragments have been predicted to feature prohibitively high overall reaction barriers.  相似文献   

10.
The gas-phase reaction mechanisms of methylamine (MA) with the ground-state Co(+)((3)F) and Ni(+)((2)D) are theoretically investigated using density functional theory at both the B3LYP/6-311++G(d,p) and B3LYP/6-311++G(3df,2p) levels. The reactions for hydride abstraction and dehydrogenation are analyzed in terms of the topology of potential energy surfaces (PESs). Co(+) and Ni(+) perform similar roles along the isomerization processes to the final products. Hydride abstraction takes place via the key species of metal cation-methyl-H intermediate, followed by a charge transfer process before the direct dissociation of CH(2)NH(2)(+)···MH (M = Co, Ni). The enthalpies of reaction, stability of metal cation-methyl-H species, and competition between different channels account for the sequence of the hydride abstraction products: CoH < NiH < CuH. The most competitive dehydrogenation route occurs through a stepwise reaction, consisting of initial C-H activation, amino-H shift, and direct dissociation of the precursor CH(2)NHM(+)···H(2). This theoretical work sheds new light on the experimental observations and provides fundamental understanding of the reaction mechanisms of amine prototype with late first-row transition metal cations.  相似文献   

11.
Ni-MoOx催化剂上的庚烷异构化   总被引:6,自引:0,他引:6  
在常压固定床流动体系中研究了Ni-MoOx催化剂对正庚烷异构化反应的催化性能.将质量分数为2%~5%的Ni掺杂于MoO3中可有效地缩短催化剂的还原活化时间,并较大幅度地提高催化剂的比活性.Ni-MoOx催化剂上的正庚烷异构化的反应活化能为35.3kJ/mol,显著低于MoOx催化剂上的活化能(49.3kJ/mol),仅为双功能分子筛催化剂的1/3~1/4.  相似文献   

12.
A new class of substituted seven-membered lactones 3 were conveniently synthesized via cyclization of o-iodobenzyl alcohol 1 (o-IC(6)H(4)CH(2)OH) with various propiolates 2 (RC triple bond CCOOMe) in the presence of Ni(dppe)Br(2) and Zn powder in acetonitrile at 80 degrees C. The catalytic reaction is highly regio- and stereoselective affording seven-membered lactones in moderate to good yields. This methodology can be successfully extended to various substituted o-iodobenzyl alcohols. An intermediate 7 was obtained from the reaction of 1a with methyl 2-octynoate (2a) in the presence of Ni(dppe)Br(2) and Zn at room temperature. A mechanism involving an unusual E/Z isomerization of the carbon-carbon double bond of 7 prior to lactone formation is proposed to account for the catalytic reaction.  相似文献   

13.
The structural changes induced in a silica-titania mixed-oxide support (1:1 molar ratio) by chlorine addition at different loading levels, their relation to the structural characteristics of supported MoOx species over the support, and their correlation with ethane oxidative dehydrogenation (ODH) activity have been examined. The molybdenum and chlorine precursors are incorporated into the Si/Ti support network as it forms during gelation by using a "one-pot" modified sol-gel/coprecipitation technique. In situ X-ray diffraction during calcination shows the Si/Ti 1:1 mixed-oxide support is in a state of nanodispersed anatase titania over amorphous silica. With the addition of molybdenum and chlorine modifier, this anatase feature becomes more pronounced, indicating a decreased dispersion of titania. The effective titania surface area on the chlorine-doped Si:Ti support obtained from 2-propanol temperature-programmed reaction supports this observation. Raman spectra of dehydrated samples point to an enhanced interaction of MoOx species with silica at the expense of titania. X-ray photoelectron spectroscopic results show that, without forming a molybdenum chloride, the presence of chlorine significantly alters the relative surface concentration of Si vs Ti, the electronic structure of the surface MoOx species, and the oxygen environment around supported MoOx species in the Si/Ti network. Secondary ion mass spectrometry detected the existence of SiCl fragments from the mass spectra, which provides molecular insight into the location of chlorine in Mo/Si:Ti catalysts. The observed increase in ethane ODH selectivity with chlorine modification may be ascribed to the MoOx species sharing more complex ligands with silica and titania with the indirect participation of chlorine. Steady-state isotopic transient kinetic analysis (SSITKA) is used to to examine the oxygen insertion and exchange mechanisms. The catalysts show very little oxygen exchange with the gas phase in the absence of a reaction medium. During the steady-state ODH reaction, lattice oxygen appears to be the primary source of oxygen in the formation of water and CO2.  相似文献   

14.
以聚四苯基卟啉(P-TPP)为敏化剂,研究了2,3-二羧基-双环[2.2.1]-2,5-庚二烯(N)的光化学价键异构化反应,在0.1mol/L的碳酸钠甲醇溶剂中,在适量的P-TPP存在下,可见光照射时,N可以定量地转化为2,3-二羧基四环[2.2.1.02,6.03,5]庚烷(Q),Q在聚四苯基卟啉钴络合物(Co-P-TPP)催化剂的作用下,又可定量地异构化返回N.分别研究了敏化剂和催化剂用量对反应的影响。通过反应物之间激发态能量的比较及N对P-TPP荧光的猝灭试验,证明光异构化反应是通过电子转移反应机制进行的。  相似文献   

15.
A sample of MoOx/SiO2, in which all of the Mo cations are present as isolated mono-oxo molybdate moieties, was prepared and investigated to understand the redox chemistry of such molybdate species and their ability to exchange oxygen with O2 and H2O. Raman spectroscopy was used to monitor the exchange of 18O for 16O in the Mo=O bond of isolated molybdate species, whereas mass spectrometry was used to follow the isotopic composition of the gaseous species, i.e., O2 and H2O. Reduction in H2 at 920 K results in the loss of one O atom per Mo atom, and consistent with this, all of the Mo(VI) cations are reduced to Mo(IV) cations. Raman spectroscopy shows that virtually all Mo=O bonds of the original molybdate species are lost upon reduction. While reoxidation of Mo(IV) cations by O2 is quantitative, studies using 18O2 reveal that only a small part of the newly formed Mo=O bonds are 18O labeled, and that the balance are 16O labeled, indicating that O-atom exchange between the support, SiO2, and the supported MoOx species occurs during reoxidation. Rapid exchange of O atoms was observed upon exposure of both bare SiO2 and MoOx/SiO2 to H2(18)O at 920 K, and the presence of MoOx species was found to enhance the rate of exchange. By contrast, very slow exchange of O atoms was observed when the oxidized catalyst was exposed to 18O2 at 920 K. In situ observations of the catalyst during exposure to a mixture of H2 and 18O2 at 920 K showed that all of the Mo cations remained in the VI oxidation state and that O atom exchange occurred at a rate comparable to that observed upon exposure to H2(18)O. The results of this investigation suggest that reoxidation of Mo(IV) cations following H2 reduction involves the formation of a Mo-peroxide species and subsequent O atom migration from such a species to the SiO2 support. It is proposed that the steady-state oxidation of H2 also involves the formation of Mo-peroxide species by interaction of O2 with a small number of Mo(IV) centers. The Mo-peroxide species are then rapidly reduced by H2 to form H2O and a Mo=O bond. The rapid exchange of O atoms between the gas phase and the catalyst observed during steady-state oxidation of H2 is attributed to interactions of the product H2O with the catalyst, rather than to O atom migration originating from the Mo-peroxide species formed on the catalyst surface.  相似文献   

16.
储伟  熊国兴 《分子催化》1994,8(3):219-224
在铜钴基催化剂体系上,由合成气制备混合醇的反应在6.0MPa的条件下进行.双活性组分体系中铜和钴是以强相互作用状态而共存的,分子探针实验表明,铜和钴的并存对于确保醇的碳链增长是重要的,助剂MoO_x的加入显著提高了La_2Zr_2O_7担载的铜钴基催化剂Co/CuLZ的活性和选择性,其作用主要表现为通过氢的可逆溢流效应而改善了体系的氢化性能,和增大了CO的插入反应能力。在改良催化剂体系上,获得了53%的醇选择性和147g/Kgcat/h的混合醇产率,内含33%的高级醇。  相似文献   

17.
[Zn(TA)2(H2O)2] (H-TA=tiglic acid) has been embedded in a framework composed of CECR (CECR=C-ethylcalix[4]resorcinarene) molecules to examine its E-->Z photoisomerization in a periodic framework. The photoisomerization of tiglic acid in CECR-[Zn(TA)2(H2O)2]4 H2O proceeds without the [2+2]-dimerization reaction that often occurs in crystals of uncomplexed analogues, and without breakdown of the crystal lattice that frequently occurs in neat crystals. The two Zn-coordinated TA molecules are located in different size cavities. The rate constants of the isomerization reaction are strongly affected by the size of the reaction cavity. Analysis of the temperature dependence of the reaction rates and the occupancies in the final photostationary state shows that the activation energies and the standard enthalpies of activation are dependent on the difference between the reaction cavities. This is the first quantitative diffraction study of solid-state E/Z isomerization of a metal-coordinated ligand in a periodic host environment.  相似文献   

18.
IntroductionA broad range of orgainc compounds[1 ,2 ]can be oxidized by means of semiconductor pho-tocatalysis with a primary focus on Ti O2 as a durable photocatalyst in recent years.WhenTi O2 is illuminated with the light of energy greater than the semiconductor band gap,elec-tron- hole pairs(e-- h ) are formed in the conduction and thevalence bandsof thesemiconduc-tor,respectively.These charge carriers,which migrate to the semiconductor surface,are ca-pable of activating oxygen species,et…  相似文献   

19.
A range of ruthenium cyclopentadienyl (Cp) complexes have been prepared and used for isomerization of allylic alcohols to the corresponding saturated carbonyl compounds. Complexes bearing CO ligands show higher activity than those with PPh3 ligands. The isomerization rate is highly affected by the substituents on the Cp ring. Tetra(phenyl)methyl-substituted catalysts rapidly isomerize allylic alcohols under very mild reaction conditions (ambient temperature) with short reaction times. Substituted allylic alcohols have been isomerized by employing Ru-Cp complexes. A study of the isomerization catalyzed by [Ru(Ph5Cp)(CO)2H] (14) indicates that the isomerization catalyzed by ruthenium hydrides partly follows a different mechanism than that of ruthenium halides activated by KOtBu. Furthermore, the lack of ketone exchange when the isomerization was performed in the presence of an unsaturated ketone (1 equiv), different from that obtained by dehydrogenation of the starting allylic alcohol, supports a mechanism in which the isomerization takes place within the coordination sphere of the ruthenium catalyst.  相似文献   

20.
Distributions of the positive charge and unpaired electron in stable conformers of the thermal isomerization products of 1-methyltricyclo[4.1.0.02,7]heptane radical cation, having bicyclo[3.1.1]heptane, bicyclo[4.1.0]heptane, bicyclo[3.2.0]hept-6-ene, and 1,3-cycloheptadiene skeletons, were estimated by the PM3 semiempirical method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号