首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(5-benzyloxy-trimethylene carbonate) (PBTMC), a new functional polycarbonate was synthesized by enzymatic ring-opening polymerization in bulk at 150°C using Porcine pancreas lipase (PPL) or Candida rugosa lipase (CL) as catalyst. Influences of different polymerization conditions such as the source of enzyme, enzyme concentration and polymerization time on the molecular weight and yield were studied. The results showed that PPL exhibited higher activity than CL. Both higher molecular weight(Mn, 18953) and yield(98%) could be obtained by the use of PPL as catalyst. 1H NMR spectrum showed no decarboxylation occurrence during the ring-opening polymerization.  相似文献   

2.
Copper-catalyzed azide-alkyne cycloaddition polymerization (CuAACP) of AB2 monomers demonstrated a chain-growth mechanism without any external ligand because of the complexation of in situ formed triazole groups with Cu catalysts. In this study, we explored the use of various ligands that affected the polymerization kinetics to tune the polymers’ molecular weights and the degree of branching (DB). Eight ligands were studied, including polyethylene glycol monomethyl ether (PEG350, Mn = 350), tris(benzyltriazolylmethyl)amine (TBTA), 2,6-bis(1-undecyl-1H-benzo[d]imidazol-2-yl)pyridine (Py(DBim)2), 2,2′-bipyridyl (bpy), 4,4′-di-n-nonyl-2,2′-bipyridine (dNbpy), N,N,N′,N″,N″-pentamethyldiethylenetriamine (PMDETA), N,N,N′,N″,N″-penta(n-butyl)diethylenetriamine (PBuDETA), and N,N,N′,N″,N″-pentabenzyldiethylenetriamine (PBnDETA). All ligands except PEG350 exhibited stronger coordination with Cu(I) than the polytriazole polymer, which freed the Cu catalyst from polymers and resulted in dominant step-growth polymerization with simultaneous chain-growth feature. Meanwhile, the use of PEG350 ligand retained the confined Cu in the polymer, demonstrating a chain-growth mechanism, but lower polymer molecular weights as compared with the no-external-ligand polymerization. Results indicated that aliphatic substituent groups on ligands had little effect on the molecular weights and DB of the polymers, but rigid aromatic substituent groups decreased both values. By varying the ligand species and amounts, hyperbranched polymers with DB value ranging from 0.53 ([TBTA]0/[Cu]0 = 5) to 0.98 ([PMDETA]0/[Cu]0 = 2) have been achieved. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2238–2244  相似文献   

3.
In this work, we functionalized hydroxypropyl cellulose (HPC) by attaching tetraphenylethylene (TPE) via copper-catalyzed azide-alkyne cycloaddition (CuAAC). The obtained HPC-TPE samples displayed water-solubility, biocompatibility, fluorescence and thermoresponsive properties. The degree of substitution (DSTPE) of HPC-TPE1 ~ 4 was determined to be 0.002, 0.006, 0.025, and 0.053, respectively. HPC-TPE could self-assemble into micelles in water with the hydrodynamic radius (Rh) ranging from 164 to 190 nm. Under different DSTPE, HPC-TPE samples showed different lower critical solution temperature (LCST) behaviors in light transmittance, Rh and fluorescence. The critical transition temperatures in light transmittance for HPC-TPE1 ~ 4 solutions were 55–49 °C during the heating process, and were 44–40 °C during the cooling process, respectively. Moreover, HPC-TPE demonstrated a rapid and sensitive response to Fe3+ with ignoring interferences in the presence of other common metal ions, and could also be used to image 4T1 cells. Therefore, this work offered a general approach for the synthesis of functionalized polymers with promising applications in sensing and bioimaging.  相似文献   

4.
Preparation and characterization of poly(N‐isopropylacrylamide) (PNIPAM) polymer brushes on the surfaces of reduced graphene oxide (RGO) sheets based on click chemistry and reversible addition‐fragmentation chain transfer (RAFT) polymerization was reported. RGO sheets prepared by thermal reduction were modified by diazonium salt of propargyl p‐aminobenzoate, and alkyne‐functionalized RGO sheets were obtained. RAFT chain transfer agent (CTA) was grafted to the surfaces of RGO sheets by click reaction. PNIPAM on RGO sheets was prepared by RAFT polymerization. Fourier transform‐infrared spectroscopy, thermogravimetric analysis, X‐ray photoelectron spectroscopy, and transmission electron microscopy (TEM) results all demonstrated that RAFT CTA and PNIPAM were successfully produced on the surfaces of RGO sheets. Nanosized PNIPAM domains on RGO sheets were observed on TEM. Micro‐DSC result indicated that in aqueous solution PNIPAM on RGO sheets presented a lower critical solution temperature at 33.2 °C. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

5.
Atom transfer radical polymerization (ATRP) is one of the most popular advanced polymerization techniques in macromolecular science, allowing the synthesis of tailor-made polymers with controlled molecular weight, architecture, composition, and functionality. The combination of ATRP and ring-opening polymerization (ROP) provides a straightforward route for the preparation of polymers exhibiting both targeted and well-defined features and biodegradability, which is very interesting for the development of new materials for biomedical applications. Among the different types of polymer architectures, amphiphilic star block copolymers (BCPs) represent a very attractive one, due to their high degree of functionality at the molecular surface, low hydrodynamic volume and higher encapsulation ability, compared to molecular systems based on linear polymers. This review article highlights the research focused on the synthesis of amphiphilic well-defined degradable star BCPs by combination of ROP and ATRP, with particular focus on the development of polymers for biomedical applications, such as anticancer drug delivery, diagnosis therapy, or photodynamic therapy, which is the most investigated field regarding these polymers.  相似文献   

6.
Compounds with bifunctional benzoxazine groups in their molecular structures form crosslinked structures characteristic of phenolic materials through a ring-opening reaction mechanism. This family of compounds offers greater flexibility than conventional novolac or resole resins in terms of molecular design. It is also superior to conventional phenolic resin in process control since it releases no by-product during curing reactions. The materials thus obtained exhibit excellent mechanical integrity with glass transition temperatures over 200°C. The synthesis, composition, and structural analysis of precursors based on bisphenol-A are discussed herein. © 1994 John Wiley & Sons, Inc.  相似文献   

7.
Anionic ring-opening polymerization (ROP) behavior of trans-cyclohexene carbonate (CHC) using metal alkoxides as initiators was investigated. As a result, lithium tert-butoxide-initiated ROP of CHC with a high-monomer concentration (10 M) at low temperature (−15 to −10°C) proceeded to afford a poly(trans-cyclohexene carbonate) (PCHC) without undesired side reactions such as mainly backbiting. The suppression of side reactions enables the control of the molecular weight (Mn = 2400–6100) of PCHC with low molar-mass dispersity values (Mw/Mn = 1.16–1.22). Furthermore, by increasing the feed ratio of the monomer to the initiator, the molecular weight increases proportionally, indicating a controllable polymerization. The results of a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis, a kinetic study, and a chain extension experiment suggested a living nature of this ROP using lithium tert-butoxide.  相似文献   

8.
1‐(ω‐Azidoalkyl)pyrrolyl‐terminated polyisobutylene (PIB) was successfully synthesized both by substitution of the terminal halide of 1‐(ω‐haloalkyl)pyrrolyl‐terminated PIB with sodium azide and by in situ quenching of quasiliving PIB with a 1‐(ω‐azidoalkyl)pyrrole. Azide substitution of the terminal halide was carried out in 50/50 heptane/DMF at 90 °C for 24 h using excess azide. The 1‐(ω‐haloalkyl)pyrrolyl‐PIB precursors included 1‐(2‐chloroethyl)pyrrolyl‐PIB, 1‐(2‐bromoethyl)pyrrolyl‐PIB, and 1‐(3‐bromopropyl)pyrrolyl‐PIB. In situ quenching involved direct addition of 1‐(2‐azidoethyl)pyrrole to quasiliving PIB initiated from 5‐tert‐butyl‐1,3‐di(1‐chloro‐1‐methylethyl)benzene (bDCC)/TiCl4 at ?70 °C in hexane/CH3Cl (60/40, v/v). 1H NMR analysis of the quenched product revealed mixed isomeric end groups in which PIB was attached at either C2 or C3 of the pyrrole ring (C2/C3 = 0.40/0.60). SEC indicated the absence of coupled PIB under optimized conditions, confirming exclusive mono‐substitution on each pyrrole ring. 1‐(3‐Azidopropyl)pyrrolyl‐PIB was reacted in modular fashion with various functional alkynes, propargyl alcohol, propargyl acrylate, glycidyl propargyl ether, and 3‐dimethylamino‐1‐propyne, via a Huisgen 1,3‐dipolar cycloaddition (Click) reaction, using Cu(I)Br/N,N,N′,N″,N″‐pentamethyldiethylenetriamine or bromtris(triphenylphosphine)Cu(I) as catalyst. The reactions were quantitative and produced PIBs bearing terminal hydroxyl, acrylate, glycidyl, or dimethylaminomethyl groups attached via exclusively four‐substituted triazole linkages. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2533–2545, 2010  相似文献   

9.
Cyclic polymers have attracted more and more attentions in recent years because of their unique topological structures and characteristic properties in both solution and bulk state. There are relatively few reports on cyclic polymers, partly because of the more demanding synthetic procedures. In recent years, “click” reaction, especially Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC), has been widely utilized in the synthesis of cyclic polymer materials because of its high efficiency and low susceptibility to side reactions. In this review, we will focus on three aspects: (1) Constructions of monocyclic polymer using CuAAC “click” chemistry; (2) Formation of complex cyclic polymer topologies through CuAAC reactions; (3) Using CuAAC “click” reaction in the precise synthesis of molecularly defined macrocycles. We believe that the CuAAC click reaction is playing an important role in the design and synthesis of functional cyclic polymers.  相似文献   

10.
The radical ring-opening polymerization of a lipoate-based monomer, ethyl lipoate, in bulk and in solution was studied at various temperatures and it was found that in all cases, only limited (plateau) conversions were reached, which were lower at higher temperatures and/or at higher dilutions. It was established that a monomer-polymer equilibrium exists with a corresponding ceiling temperature of 139°C. Due to the reversibility of the lipoate polymerization, when poly(ethyl lipoate) was heated to 150°C, it degraded and within 3 h, the molecular weight decreased to less than 15% of the initial value. Likewise, when the polymer was dissolved in anisole and a radical initiator was added, degradation was observed even at 60°C and it became increasingly pronounced at higher concentrations of the radical source. Due to the presence of multiple disulfide groups in the backbone, poly(ethyl lipoate) also degraded in the presence of reducing agents, such as tributylphosphine, yielding the reduced (dithiol) form of the monomer, ethyl dihydrolipoate.  相似文献   

11.
The present review narrates several reports which deal with the synthesis of fused 1,2,3-triazole containing scaffolds following a sequential multicomponent reaction (MCR)—intramolecular azide-alkyne cycloaddition (IAAC) approach. The reviewed reactions were cleverly designed so as to incorporate azide and alkyne functionalities in the MCR product which was then subjected to IAAC. The review is divided into two sections based on the number of components in the multicomponent reaction. We have aimed at a critical discussion and also have highlighted either advantages or disadvantages of each methodology.  相似文献   

12.
Three new 1,4-anhydro-glucopyranose derivatives having different hydroxyl protective groups such as 1,4-anhydro-2,3,6-tri-O-methyl-α-D -glucopyranose (AMGLU), 1,4-anhydro-6-O-benzyl-2,3-di-O-methyl-α-D -glucopyranose (A6BMG), and 1,4-anhydro-2,3-di-O-methyl-6-O-trityl-α-D -glucopyranose (A6TMG) were synthesized from methyl α-D -glucopyranoside in good yields. Their polymerizability was compared with that of 1,4-anhydro-2,3,6-tri-O-benzyl-α-D -glucopyranose (ABGLU) reported previously. The trimethylated monomer, AMGLU, was polymerized by a PF5 catalyst to give 1,5-α-furanosidic polymer having number-average molecular weights (M̄n) in the range of 2.8 × 103 to 6.8 × 103. The 13C-NMR spectrum was compared with that of methylated amylose and cellulose. Other anhydro monomers, A6BMG and A6TMG, gave the corresponding 1,5-α furanosidic polymers having M̄n = 17.1 × 103 and 1.8 × 103, respectively. Thus, the substituents at the C2 and C6 positions were found to play an important role for the ring-opening polymerizability of the 1,4-anhydro-glucose monomers. In addition, debenzylation of the tribenzylated polymer gave free (1 → 5)-α-D -glucofuranan. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 841–850, 1998  相似文献   

13.
A series of benzoxazine compounds have been prepared from different bifunctional phenols and primary amines and the molecular compositions of the precursors are characterized by nuclear magnetic resonance, Fourier transform infrared, and size exclusion chromatography. It has been demonstrated that by design of the molecular structures of the benzoxazine precursors, therefore by tailoring of the network molecular architectures, new phenolic materials with superior mechanical and thermal properties, and ease-of-processing characteristics can be obtained. The characteristics of dynamic mechanical spectra of the phenolic materials are studied and related to their structural features. © 1994 John Wiley & Sons, Inc.  相似文献   

14.
Scandium p-tert-butylcalix[6]arene complex has been synthesized from scandium isopropoxide and p-tert-butylcalix[6]arene and used as a single component initiator for the first time. The polymerization of 2,2-dimethyltrimethylene carbonate (DTC) using this complex can proceed under mild conditions. Poly (2,2-dimethyltrimethylene carbonate) (PolyDTC) with weight-average molecular weight of 33700 and molecular weight distribution of 1.21 can be prepared. Kinetics study indicates that the polymeri- zation rate is first order with respect to both monomer and initiator concentrations, and the apparent activation energy of the polymerization is 22.7 kJ/mol. 1H NMR spectrum of the polymer reveals that the monomer ring opens via acyl-oxygen bond cleavage leading to an active center of Sc-O.  相似文献   

15.
Herein it is reported how the overlap concentration (C*) can be used to overcome crosslinking due to diol impurities in commercial poly(ethylene glycol) (PEG), allowing for the synthesize of bottlebrush polymers with good control over molecular weight. Additionally, PEG-based bottlebrush networks are synthesized via ring-opening metathesis polymerization, attaining high conversions with minimal sol fractions (<2%). The crystallinity and mechanical properties of these networks are then further altered by solvent swelling with phosphate buffer solution and 1-ethyl-3-methylimidazolium ethyl sulfate/dichloromethane cosolvents. The syntheses reported here highlight the potential of the bottlebrush network architecture for use in the rational design of new materials.  相似文献   

16.
We report the combination of "click chemistry" with PCR by using alkyne-modified triphosphates for efficient and homogeneous labeling of DNA. A series of modified PCR products of different lengths (300, 900, and 2000 base pairs) were prepared by using a variety of alkyne- and azide-containing triphosphates and different polymerases. After intensive screening of real-time PCR methods, protocols were developed that allow the amplification of genes by using these modified triphosphates with similar efficiency to that of standard PCR. The click reaction on the highly modified PCR fragments provided conversion rates above 90 % and resulted in the functionalization of hundreds of alkynes on large DNA fragments with superb selectivity and efficiency.  相似文献   

17.
A series of maerocyclic arylate diraers have been selectively synthesized by an interfacial polyconden-sation of o-phthaloyldichloride with bisphenols A combination of GPC,FAB-MS,1H and 13C NMR unambiguously confirmed the cyclic nature Although single-crystal X-ray analysis of two such macrocycles reveals no severe strain on the cyclic structures,these macrocycles can undergo facile melt polymerization to give high molecular weight polyary-lates.  相似文献   

18.
A simple scheme involving atom transfer radical polymerization (ATRP) from a bifunctional initiator, conversion of the bromine end groups of the resulting telechelic polymer to azides, and cross-linking of this azido-telechelic macromonomer with multi-acetylene functionalized small molecules via copper-catalyzed azide-alkyne cycloaddition was employed to prepare the first tert-butyl acrylate model networks. This general scheme is wide in scope, enabling synthesis of model networks possessing defined pore size from any monomer polymerizable by ATRP. Introduction of an olefin moiety into the ATRP initiator enabled degradation of the materials by ozonolysis to yield star polymer products bearing three or four arms depending on which cross-linker was employed in the parent network. Size-exclusion chromatography of the ozonolysis products confirmed the pore size of the parent network and yielded insight into the number of unreacted functionalities. Model networks derived from a trifunctional alkyne were found to be more completely cross-linked than those derived from a tetrafunctional alkyne, presumably due to less steric hindrance in the former system.  相似文献   

19.
Synthesis and radical ring-opening polymerization of vinylcyclopropane bearing six-membered cyclic acetal moiety, 1-vinyl-4,8-dioxaspiro[2.5]octane (1), were carried out. 1 was prepared by the reaction of 1,1-dichloro-2-vinylcyclopropane and 1,3-propanediol in DMF in the presence of a base. Radical polymerization of 1 was carried out in the presence of an appropriate initiator (3 mol % vs. 1) at 60 and 120°C in degassed sealed ampoules for 20 h. A colorless transparent viscous polymer was obtained by the isolation with preparative HPLC. The structure of poly(1) was determined to consist of two 1,5-ring-opened units and a unit bearing no olefinic moiety. The difference of the activation energies for the ring-opening reaction of the cyclopropane ring calculated by the molecular orbital method could explain the selectivity in the direction of the cleavage of the cyclopropane ring. Acid hydrolysis of poly(1) afforded the corresponding polyketone in quantitative conversion. © 1996 John Wiley & Sons, Inc.  相似文献   

20.
A series of hitherto unknown (1,4-disubstituted-1,2,3-triazol)-(E)-2-methyl-but-2-enyl nucleosides phosphonate prodrugs bearing 4-substituted-1,2,3-triazoles were prepared in a straight approach through an olefin acyclic cross metathesis as the key synthetic step. All novel compounds were evaluated for their antiviral activities against HBV, HIV and SARS-CoV-2. Among these molecules, only compound 15j, a hexadecyloxypropyl (HDP)/(isopropyloxycarbonyl-oxymethyl)-ester (POC) prodrug, showed activity against HBV in Huh7 cell cultures with 62% inhibition at 10 μM, without significant cytotoxicity (IC50 = 66.4 μM in HepG2 cells, IC50 = 43.1 μM in HepG2 cells) at 10 μM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号