首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Modification of the type I polyhydroxyalkanoate synthase of Ralstonia eutropha (PhaC(Re)) was performed through systematic in vitro evolution in order to obtain improved PhaC(Re) having an enhanced activity of poly(3-hydroxybutyrate) (PHB) synthesis in recombinant Escherichia coli. For the first time, a beneficial G4D N-terminal mutation important for the enhancement of both PHB content in dry cells and PhaC(Re) level in vivo was identified. Site-directed saturation mutagenesis at the G4 position enabled us to identify other mutations conferring similar enhanced characteristics. In addition, the PHB homopolymer synthesized by most G4X single mutants also had higher molecular weights than that of the wild-type. In vitro enzymatic assays of purified G4D mutant PhaC(Re) revealed that the mutant enzyme exhibited slightly lower activity and reaction efficiency compared to the wild-type enzyme. [diagram in text].  相似文献   

2.
Eleven laboratory-evolved polyhydroxyalkanoate (PHA) synthases which originated from Pseudomonas sp. 61-3 enzyme (PhaC1(Ps)), together with the wild-type enzyme, were applied for PHA synthesis from fructose using Ralstonia eutropha PHB(-)4 as a host strain. The evolved PhaC1(Ps) mutants had amino acid substitution(s) at position 325 and/or position 481. In these mutants, serine-325 (S325) was replaced by cysteine (C) or threonine (T), while glutamine-481 (Q481) was replaced by lysine (K), methionine (M) or arginine (R). All recombinant strains harboring the genes of the evolved PhaC1(Ps) mutants produced a significantly increased amount of PHA (55-68 wt.-%) compared with the one harboring the wild-type gene (49 wt.-%). Particularly, those evolved PhaC1(Ps) mutants having multiple amino acid substitutions showed higher activities for PHA synthesis. Characterization of the PHA by NMR spectroscopy revealed that they were copolymers consisting of (R)-3-hydroxybutyrate (98-99 mol-%) and medium-chain-length comonomers (1-2 mol-%). This study also confirmed that amino acid substitution at position 481 in PhaC1(Ps) led to an increasing molecular weight of PHA. The number-average molecular weight (Mn) of PHA (Mn = 240,000) synthesized by the evolved PhaC1(Ps) (Q481K) mutant was 4.6-fold greater than that (Mn = 52,000) synthesized by the wild-type enzyme.  相似文献   

3.
A new strategy for bacterial polyhydroxyalkanoate (PHA) production by recombinant Ralstonia eutropha PHB(-)4 harboring mutated PHA synthase genes (phaC(Ac)) from Aeromona caviae was investigated. The strain harboring wild-type phaC(Ac) gene produced a PHA copolymer consisting of (R)-3-hydroxybutyrate and (R)-3-hydroxyhexanoate [P(3HB-co-3HHx)] with 3.5 mol-% of 3HHx fraction from soybean oil. When the mutants of phaC(Ac) gene were applied to this production system, 3HHx fraction in copolymers was varied in the range of 0-5.1 mol-%. Thus, the regulation of PHA copolymer compositions has been achieved by the use of mutated PHA synthase genes.  相似文献   

4.
Polyhydroxyalkanoate (PHA) synthase from Pseudomonas sp 61-3 (PhaC1(Ps)) is able to synthesize P(3HB-co-3HA), consisting of a 3HB unit and medium-chain-length 3HA units of 6-12 carbon atoms. Expression vectors encoding 76 PhaC1(Ps) mutants with an amino acid replacement at position 130, 325, 477 or 481 were individually introduced into Ralstonia eutropha. The mutant enzyme genes were evaluated in terms of their abilities to synthesize P(3HB-co-3HA) using soybean oil as a carbon source. 20 mutants showed significantly high accumulation levels of PHA exceeding 30 wt.-% and as high as 57 wt.-%. It was found that hydrophobic amino acids at the positions are more likely to enhance accumulation of PHA in R. eutropha.  相似文献   

5.
Amino acid substitutions at two residues downstream from the active-site histidine of polyhydroxyalkanoate (PHA) synthases are effective for changing the composition and the molecular weight of PHA. In this study, saturation mutagenesis at the position Ala505 was applied to PHA synthase (PhaCAc) from Aeromonas caviae to investigate the effects on the composition and the molecular weight of PHA synthesized in Ralstonia eutropha. The copolymer composition and molecular weight of PHA were varied by association with amino acid substitutions. There was a strong relationship between copolymer composition and PHA synthase activity of the cells. This finding will serve as a rationale for producing tailor-made PHAs.  相似文献   

6.
Pseudomonas putida KT2442 could accumulate medium-chain-length poly(hydroxyalkanoate)s (PHA) consisting of 3-hydroxyhexanoate, 3-hydroxyoctanoate, 3-hydroxydecanoate, and 3-hydroxydodecanoate from a wide range of carbon sources. In this study, the PHA synthase pha operon (phaC1-phaZ-phaC2) was knocked out and the vgb gene encoding vitreoscilla hemoglobin protein (VHb), which could enhance oxygen uptake rate especially at low oxygen concentration, was integrated into the P. putida KT2442 genome to replace the deleted fragment. The resulting mutant P. putida KTOY01 or gene-replaced mutant KTOY02 was used as the host to study PHA synthase properties and PHA production. Different PHA polymerase (PhaC) genes, phaC(Re) from Rastonia eutropha H16, phaC(Ac) from Aeromonas cavie, and phaC2(Ps) from Pseudomonas stutzeri 1317, were expressed in the mutant strains to test the PhaC enzyme substrate specificity. The result showed P. putida KTOY01 or KTOY02 could provide not only mcl PHA monomers but also 3-hydroxybutyrate from fatty acids, which may allow the production of copolyesters poly(3HB-co-mcl 3HA). Plasmid pCJY10 containing phaC2(Ps), phbA, and phbB genes encoding PHA polymerase, beta-ketothiolase, and acetoacetyl-CoA reductase, respectively, were transformed into P. putida KTOY01 and KTOY02. Shake-flask culture showed P. putida KTOY01 or KTOY02 (pCJY10) could accumulate poly(3HB-co-mcl 3HA) from glucose. The above result showed pha operon knockout mutant of P. putida KT2442 was a very useful host of great potential not only for studying PhaC synthase, but also for microbial production of copolyesters poly(3HB-co-mcl 3HA), which is very difficult to obtain.  相似文献   

7.
Polyhydroxyalkanoate (PHA) granules with core-shell layered microstructure were synthesized in Ralstonia eutropha using periodic feeding of valeric acid into a growth medium containing excess fructose. The O2 consumption and CO2 evolution rates, determined by off-gas mass spectrometry, have been used as sensitive measures to indicate the type of nutrients utilized by R. eutropha during PHA synthesis. Domains of poly-3-hydroxybutyrate (PHB) were formed during polymer storage conditions when only fructose was present. Feeding of valeric acid (pentanoic acid) resulted in the synthesis of hydroxyvalerate (HV) monomers, forming a poly-3-hydroxybutyrate-co-valerate (PHBV) copolymer. The synthesis of desired polymer microstructures was monitored and controlled using online mass spectrometry (MS). The respiratory quotient (RQ) was unique to the type of polymer being synthesized due to increased O2 consumption during PHBV synthesis. MS data was used as the control signal for nutrient feeding strategies in the bioreactor. The core-shell structures synthesized were verified in cells using transmission electron microscopy after thin sectioning and staining with RuO4. It was demonstrated that the synthesis of core-shell microstructures can be precisely controlled utilizing a MS feedback control system.  相似文献   

8.
Polyhydroxyalkanoate (PHA) synthase (PhaC) from Wautersia eutropha was expressed in a wide range of production level in Escherichia coli XL1-Blue cells and its effects on PhaC activity, poly[(R)-3-hydroxybutyrate] [P(3HB)] production and its molecular weights were investigated. The production level of PhaC was controlled both by the amount of chemical inducer (isopropyl-β-d-thiogalactopyranoside, IPTG) added into the medium and the use of different copy number of plasmids. In a flask experiment, as PhaC production level in the cells increased, the PhaC activity also increased in the range of low PhaC concentration. However, PhaC activity did not further increase in the range of high PhaC concentration, probably due to the formation of inclusion body in the cells. The molecular weight of P(3HB) was found to decrease with increasing PhaC activity. This trend was also verified in high cell density cultivation using 10-l jar fermentor. Furthermore, we demonstrated that the use of low copy number plasmid and appropriate induction of PhaC expression were effective in achieving both high productivity and high molecular weight of P(3HB).  相似文献   

9.
A novel triblock copolymer PS–PHB–PS based on the microbial polyester Poly[(R)‐3‐hydroxybutyrate)] (PHB) and poly(styrene) (PS) was prepared to be used as compatibilizer for the corresponding PHB/PS blends. It was prepared in a three‐step procedure consisting of (i) transesterification reaction between ethylene glycol and a high‐molecular‐weight PHB, (ii) synthesis of bromo‐terminated PHB macroinitiator, and (iii) atom transfer radical polymerization polymerization of styrene initiated by the PHB‐based macroinitiator. Fourier transform infrared, gel permeation chromatography, 1H‐, and 13C‐NMR spectroscopies were used to determine the molecular structure and/or end‐group functionalities at each step of the procedure. Although thermogravimetric analysis showed that the block copolymer underwent a stepwise thermal degradation and had better thermal stability than their respective homopolymers, differential scanning calorimetry displayed that the PHB block in the copolymer could not crystallize, and thus generating a total amorphous structure. Atomic force microscopy images indicated that the block copolymer was phase segregated in a well‐defined morphological structure with nanodomain size of ~40 nm. Contact angle measurements proved that the wettability properties of the block copolymer were in between those of the PHB and PS homopolymers. Blends analyzed for their morphology and thermal properties showed good miscibility and had well‐defined morphological features. Polymer blends exhibited lower crystallinity and decreased stiffness which was proportional to the amount of compatibilizer content in the blends. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
A wide variety of different types of microorganisms are known to produce intracellular energy and carbon storage products, which have been generally described as being poly (β-hydroxybutyrate), PHB, but which are, more often than not, copolymers containing different alkyl groups at the β-position. Hence, PHB belongs to the family ofpoly (β-hydroxyalkanoastes), PHA, all of which are usually formed as intracellular inclusions in bacteria under unbalanced growth conditions. Recently, it became of industrial interest to evaluate these PHA polyesters as natural biodegradable and biocompatible plastics for a wide range of possible applications, such as surgical sutures or packaging containers. For industrial applications, the controlled incorporation of repeating units with different chain lengths into a series of copolymers is desirable in order to produce polyesters with a range of material properties because physical and chemical characteristics depend strongly on the polymer composition. Such "tailor-made" copolymers can be produced under controlled growth conditions in that, if a defined mixture of substrates for a certain type of microorganisms is supplied, a well defined and reproducible copolymer is formed.  相似文献   

11.
By fractional precipitaion of bacterial copolyesters, it has been strongly suggested that the bacterial PHA copolymer normally has broad and/or multimodal chemical composition distribution (CCD). In this paper, we try to review the works on the blends of two bacterial polyesters in order to accumulate knowledge on the relation between CCD and various properties required for the practical application of bacterial copolymers. Phase structures of the blends of poly(3-hydroxybutyrate) [PHB] and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [PHB-HV] and crystallization kinetics of the blends of PHB-HV and poly(3-hydroxybutyrate-co-3-hydroxypropionate) [PHB-HP] are described.  相似文献   

12.
Individual polyhydroxyalkanoate synthase molecules from Ralstonia eutropha (PhaCRe) were directly visualized on highly oriented pyrolytic graphite (HOPG) by atomic force microscopy (AFM). PhaCRe molecule was observed as a spherical particle of 2.9 +/- 0.4 nm in height and 28 +/- 4 nm in width. In vitro polymerization reaction on HOPG was carried out for 5 min by reacting the PhaCRe molecules with (R)-3-hydroxybutyryl-CoA monomers. The reaction product was then observed after the removal of water solution. Several PhaCRe molecules associated with each other to form an assembly, which was attached to a fibrillar structure of ca. 0.2-0.3 nm in height. The fibrillar structure that elongated from the PhaCRe assembly was interpreted as the poly[(R)-3-hydroxybutyrate] polymer chain. High resolution AFM suggested that the PhaCRe assembly was composed of 3-4 subunits of PhaCRe molecules. This was further supported by SDS-PAGE analysis of the cross-linked PhaCRe enzyme. These results suggest that more than two subunits of PhaCRe are necessary for the in vitro polymerization of PHB molecular chains.  相似文献   

13.
以葡萄糖为碳源合成生物降解性聚酯的研究   总被引:1,自引:0,他引:1  
利用从油田土壤中筛选的菌种DG17 以葡萄糖为碳源通过微生物发酵法合成了具有不同结构单元的新型生物可降解性聚合物———聚羟基脂肪酸酯(PHAs) .初步研究了DG17 以葡萄糖为碳源的生物合成规律,并借助GC、NMR 等分析手段对合成的聚合物进行了结构的分析表征,另外还研究了PHAs 的活性污泥降解情况.研究表明,在限氮条件下,只有碳氮比高于5后,DG17 才能在其体内合成PHAs.在过量碳源的存在下,氮磷比低,得到的聚合物是一种具长侧链的聚( 羟基辛酸 co 羟基癸酸) 的共聚物,为一种热塑性弹性体.在硫酸铵浓度为0-5g/L,碳氮比为20 条件下合成的P(HO co HD) 热塑性弹性体的数均分子量为1-16 ×10 - 5 ,分子量分散指数为2-43 .其玻璃化温度及熔融温度分别为Tg = - 52 ℃,Tm = 50 ℃.氮磷比高,则合成热塑性塑料PHB.结果表明培养基中氮源与磷酸盐的相对浓度是影响DG17 生物合成路径的重要条件.  相似文献   

14.
Polyhydroxyalkanoates (PHAs) are a family of aliphatic polyesters produced by a variety of microorganisms as a reserve of carbon and energy. Enzymes involved in the synthesis of PHAs can be utilized to produce polymers in vitro, both in bulk and on solid surfaces. Here, site-specific attachment of the key catalytic enzyme, PHA synthase, on lithographically patterned surfaces and subsequent addition of (R)-3-hydroxybutyryl-CoA substrate allowed us to fabricate spatially ordered polyhydroxybutyrate (PHB) polymeric structures via an in situ enzymatic surface-initiated polymerization (ESIP). By varying the reaction conditions, we enhanced the growth of PHB on solid surfaces and analyzed the resulting structures by fluorescence microscopy, atomic force microscopy (AFM), attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, and gel permeation chromatography (GPC). We found that stabilization of smaller PHB granule structures by an addition of bovine serum albumin (BSA) was the most important factor for a successful synthesis of a PHB layer up to 1mum in thickness, consisting mainly of larger cluster assemblies of PHB granules that cover the entire patterned area. Immunofluorescence detection and surface contact angle analysis revealed that BSA was physically bound to the PHB polymer all through the cluster, and reduced the overall hydrophobicity of the polymer surface. Based on information obtained from AFM, kinetic measurements and various polymer characterization methods, a plausible model for roles of BSA in the enhancement of PHB formation on surfaces is discussed. Furthermore, by using biotinylated BSA conjugates, we were able to incorporate biotin groups into the PHB polymer matrix, thus generating a bioactive surface that can be used for displaying other functional biomolecules through streptavidin-biotin interaction on the PHB structures. Because of its versatility, our fabrication strategy is expected to be a useful surface modification tool for numerous biomedical and biotechnological applications.  相似文献   

15.
High molecular weight copolyesters were prepared by the acidolysis of poly(ethylene terephthalate) with p-acetoxybenzoic acid and polycondensation through the acetate and carboxyl groups. The mechanical properties of the injection-molded copolyesters containing 40–90 mole- % p-hydroxybenzoic acid (PHB) were highly anisotropic and dependent upon the PHB content, polyester molecular weight, injection-molding temperature, and specimen thickness. As the injection-molding temperature increased and the specimen thickness decreased, the tensile strength, stiffness, and Izod impact strength increased when measured along the direction of flow of the polymer melt, and the coefficient of thermal expansion was zero. In some compositions these properties were superior to those of commercial glass fiber reinforced polyesters. Maximum tensile strengths, flexural moduli, notched Izod impact strengths, and minimum melt viscosities were obtained with polyesters containing 60–70 mole-% PHB. Higher oxygen indicies (39-40) and heat deflection temperatures (150-220°C) were obtained with 80–90 mole-% PHB.  相似文献   

16.
Bacillus flexus cultivated on sucrose and sucrose with plant oil such as castor oil produced polyhydroxybutyrate (PHB), a homopolymer of polyhydroxyalkanoate (PHA) and PHA copolymer (containing hydroxybutyrate and hexanoate), respectively. Gamma irradiation of these cells (5–40 kGy) resulted in cell damage and aided in the isolation of 45% and 54% PHA on biomass weight, correspondingly. Molecular weight of PHB increased from 1.5×105 to 1.9×105 after irradiation (10 kGy), with marginal increase of tensile strength from 18 to 20 MPa. At the same irradiation dosage, PHA copolymer showed higher molecular weight increase from 1.7×105 to 2.3×10 5 and tensile strength from 20 to 35 MPa. GC, GC–MS, FTIR and 1H NMR were used for the characterization of PHA. Gamma irradiation seems to be a novel technique, to induce cross-linking and molecular weight increase of PHA copolymer and aid in easy extractability of intracellular PHA, simultaneously.  相似文献   

17.
A novel ketene, ethyl(4-methoxyphenyl)ketene (EMPK), was synthesized by the dehydrochlorination of 2-(4-methoxyphenyl)butanoyl chloride. The anionic polymerizations of EMPK by butyllithium in tetrahydrofuran at −20 °C were carried out with a varying feed ratio to give the corresponding polyesters having predictable molecular weights and narrow molecular weight distributions, quantitatively. The selective formation of the polyester was confirmed by IR analysis, and the reductive degradation of the polymer was supported by lithium–aluminium hydride. The second feed of the monomer (after the first stage of polymerization) resulted in the formation of the polymer with the expectedly increased molecular weight and low polydispersity to strongly support the living mechanism of this polymerization. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1596–1600, 2001  相似文献   

18.
A process for reversible addition-fragmentation chain transfer (RAFT) radical polymerization in a mini-emulsion system stabilized by ammnolyzed poly(styrene-alt- maleic anhydride) copolymer (SMA) as an amphiphilic macro RAFT agent has been applied to the copolymerization of styrene and butadiene to prepare nanoparticles. First, for the RAFT polymerization of styrene, the results of molecular weights (Mns) and polydispersity index (PDIs) determined by GPC showed that the RAFT mini-emulsion polymerization of styrene exhibited good controlled/living nature with a lower degree of aminolysis (~30%). Second, for the copolymerization of styrene and butadiene, before the gel point the molecular weight growth was followed during the polymerization by GPC and the results revealed that the GPC curve moves to the higher molecular weight indicating the formation of the copolymer. At low conversion, molecular weights (Mns) are in good agreement with theoretical prediction. The microphase separation of the copolymer nanoparticles was confirmed by transmission electron microscopy (TEM).  相似文献   

19.
Adsorption of PHB depolymerase from Ralstonia pickettii T1 to biodegradable polyesters such as poly[(R)-3-hydroxybutyrate] (PHB) and poly(l-lactic acid) (PLLA) was investigated by atomic force microscopy (AFM). The substrate-binding domain (SBD) with histidines within the N-terminus was prepared and immobilized on the AFM tip surface via a self-assembled monolayer with a nitrilotriacetic acid group. Using the functionalized AFM tips, the force-distance measurements for polyesters were carried out at room temperature in a buffer solution. In the case of AFM tips with immobilized SBD and their interaction with polyesters, multiple pull-off events were frequently recognized in the retraction curves. The single rupture force was estimated at approximately 100 pN for both PLLA and PHB. The multiple pull-off events were recognized even in the presence of a surfactant, which will prevent nonspecific interactions, but reduced when using polyethylene instead of polyesters as a substrate. The present results provide that the PHB depolymerase adsorbs specifically to the surfaces of polyesters and that the single unbinding event evaluated here is mainly associated with the interaction between one molecule of SBD and the polymer surface.  相似文献   

20.
The well-known dynamic kinetic resolution of secondary alcohols and esters was extended to secondary diols and diesters to afford chiral polyesters. This process is an example of iterative tandem catalysis (ITC), a polymerization method where the concurrent action of two fundamentally different catalysts is required to achieve chain growth. In order to procure chiral polyesters of high enantiomeric excess value (ee) and good molecular weight, the catalysts employed need to be complementary and compatible during the polymerization reaction. We here show that Shvo's catalyst and Novozym 435 fulfil these requirements. The optimal polymerization conditions of 1,1'-(1,3-phenylene) diethanol (1,3-diol) and diisopropyl adipate required 2 mol% Shvo's catalyst and 12 mg Novozym 435 per mmol alcohol group in the presence of 0.5 M 2,4-dimethyl-3-pentanol as the hydrogen donor. With these conditions, chiral polyesters were obtained with peak molecular weights up to 15 kDa, an ee value up to 99% and with 1-3 % ketone end groups. Also with the structural isomer, 1,4-diol, a chiral polyester was obtained, albeit with lower molecular weight (8.3 kDa) and slightly lower ee (94%). Aliphatic secondary diols also resulted in enantio-enriched polymers but at most an ee of 46 % was obtained with molecular weights in the range of 3.3-3.7 kDa. This low ee originates from the intrinsic low enantioselectivity of Novozym 435 for this type of secondary aliphatic diols. The results presented here show that ITC can be applied to procure chiral polyesters with good molecular weight and high ee from optically inactive AA-BB type monomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号