首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Grundy (or First-Fit) chromatic number of a graph G is the maximum number of colors used by the First-Fit coloring of the graph G. In this paper we give upper bounds for the Grundy number of graphs in terms of vertex degrees, girth, clique partition number and for the line graphs. Next we show that if the Grundy number of a graph is large enough then the graph contains a subgraph of prescribed large girth and Grundy number.  相似文献   

2.
It has been conjectured that for every claw-free graph G the choice number of G is equal to its chromatic number. We focus on the special case of this conjecture where G is perfect. Claw-free perfect graphs can be decomposed via clique-cutset into two special classes called elementary graphs and peculiar graphs. Based on this decomposition we prove that the conjecture holds true for every claw-free perfect graph with maximum clique size at most 4.  相似文献   

3.
A graph is clique-perfect if the cardinality of a maximum clique-independent set equals the cardinality of a minimum clique-transversal, for all its induced subgraphs. A graph G is coordinated if the chromatic number of the clique graph of H equals the maximum number of cliques of H with a common vertex, for every induced subgraph H of G. Coordinated graphs are a subclass of perfect graphs. The complete lists of minimal forbidden induced subgraphs for the classes of cliqueperfect and coordinated graphs are not known, but some partial characterizations have been obtained. In this paper, we characterize clique-perfect and coordinated graphs by minimal forbidden induced subgraphs when the graph is either paw-free or {gem,W4,bull}-free, two superclasses of triangle-free graphs.  相似文献   

4.
A graph coloring game introduced by Bodlaender (Int J Found Comput Sci 2:133–147, 1991) as coloring construction game is the following. Two players, Alice and Bob, alternately color vertices of a given graph G with a color from a given color set C, so that adjacent vertices receive distinct colors. Alice has the first move. The game ends if no move is possible any more. Alice wins if every vertex of G is colored at the end, otherwise Bob wins. We consider two variants of Bodlaender’s graph coloring game: one (A) in which Alice has the right to have the first move and to miss a turn, the other (B) in which Bob has these rights. These games define the A-game chromatic number resp. the B-game chromatic number of a graph. For such a variant g, a graph G is g-perfect if, for every induced subgraph H of G, the clique number of H equals the g-game chromatic number of H. We determine those graphs for which the game chromatic numbers are 2 and prove that the triangle-free B-perfect graphs are exactly the forests of stars, and the triangle-free A-perfect graphs are exactly the graphs each component of which is a complete bipartite graph or a complete bipartite graph minus one edge or a singleton. From these results we may easily derive the set of triangle-free game-perfect graphs with respect to Bodlaender’s original game. We also determine the B-perfect graphs with clique number 3. As a general result we prove that complements of bipartite graphs are A-perfect.   相似文献   

5.
Given a graph G, by a Grundy k-coloring of G we mean any proper k-vertex coloring of G such that for each two colors i and j, i<j, every vertex of G colored by j has a neighbor with color i. The maximum k for which there exists a Grundy k-coloring is denoted by Γ(G) and called Grundy (chromatic) number of G. We first discuss the fixed-parameter complexity of determining Γ(G)?k, for any fixed integer k and show that it is a polynomial time problem. But in general, Grundy number is an NP-complete problem. We show that it is NP-complete even for the complement of bipartite graphs and describe the Grundy number of these graphs in terms of the minimum edge dominating number of their complements. Next we obtain some additive Nordhaus-Gaddum-type inequalities concerning Γ(G) and Γ(Gc), for a few family of graphs. We introduce well-colored graphs, which are graphs G for which applying every greedy coloring results in a coloring of G with χ(G) colors. Equivalently G is well colored if Γ(G)=χ(G). We prove that the recognition problem of well-colored graphs is a coNP-complete problem.  相似文献   

6.
In this paper we characterize the convex dominating sets in the composition and Cartesian product of two connected graphs. The concepts of clique dominating set and clique domination number of a graph are defined. It is shown that the convex domination number of a composition G[H] of two non-complete connected graphs G and H is equal to the clique domination number of G. The convex domination number of the Cartesian product of two connected graphs is related to the convex domination numbers of the graphs involved.  相似文献   

7.
An edge-coloring is an association of colors to the edges of a graph, in such a way that no pair of adjacent edges receive the same color. A graph G is Class 1 if it is edge-colorable with a number of colors equal to its maximum degree Δ(G). To determine whether a graph G is Class 1 is NP-complete [I. Holyer, The NP-completeness of edge-coloring, SIAM J. Comput. 10 (1981) 718-720]. First, we propose edge-decompositions of a graph G with the goal of edge-coloring G with Δ(G) colors. Second, we apply these decompositions for identifying new subsets of Class 1 join graphs and cobipartite graphs. Third, the proposed technique is applied for proving that the chromatic index of a graph is equal to the chromatic index of its semi-core, the subgraph induced by the maximum degree vertices and their neighbors. Finally, we apply these decomposition tools to a classical result [A.J.W. Hilton, Z. Cheng, The chromatic index of a graph whose core has maximum degree 2, Discrete Math. 101 (1992) 135-147] that relates the chromatic index of a graph to its core, the subgraph induced by the maximum degree vertices.  相似文献   

8.
For a graph G, let χ(G) denote its chromatic number and σ(G) denote the order of the largest clique subdivision in G. Let H(n) be the maximum of χ(G)=σ(G) over all n-vertex graphs G. A famous conjecture of Hajós from 1961 states that σ(G) ≥ χ(G) for every graph G. That is, H(n)≤1 for all positive integers n. This conjecture was disproved by Catlin in 1979. Erd?s and Fajtlowicz further showed by considering a random graph that H(n)≥cn 1/2/logn for some absolute constant c>0. In 1981 they conjectured that this bound is tight up to a constant factor in that there is some absolute constant C such that χ(G)=σ(G) ≤ Cn 1/2/logn for all n-vertex graphs G. In this paper we prove the Erd?s-Fajtlowicz conjecture. The main ingredient in our proof, which might be of independent interest, is an estimate on the order of the largest clique subdivision which one can find in every graph on n vertices with independence number α.  相似文献   

9.
We show complexity results for some generalizations of the graph coloring problem on two classes of perfect graphs, namely clique trees and unit interval graphs. We deal with the μ-coloring problem (upper bounds for the color on each vertex), the precoloring extension problem (a subset of vertices colored beforehand), and a problem generalizing both of them, the (γ, μ)-coloring problem (lower and upper bounds for the color on each vertex). We characterize the complexity of all those problems on clique trees of different heights, providing polytime algorithms for the cases that are easy. These results have two interesting corollaries: first, one can observe on clique trees of different heights the increasing complexity of the chain k-coloring, μ-coloring, (γ, μ)-coloring, list-coloring. Second, clique trees of height 2 are the first known example of a class of graphs where μ-coloring is polynomial time solvable and precoloring extension is NP-complete, thus being at the same time the first example where μ-coloring is polynomially solvable and (γ, μ)-coloring is NP-complete. Last, we show that the μ-coloring problem on unit interval graphs is NP-complete. These results answer three questions from [Ann. Oper. Res. 169(1) (2009), 3–16].  相似文献   

10.
The ramsey number of a connected nonbipartite graph G with a sufficiently long path emanating from one of its points is found to be (n?1)(χ?1)+s, where n is the number of points of G, χ is the chromatic number of G, and s is the minimum possible number of points in a color class in a χ-coloring of the points of G.  相似文献   

11.
We color the nodes of a graph by first applying successive contractions to non-adjacent nodes until we get a clique; then we color the clique and decontract the graph. We show that this algorithm provides a minimum coloring and a maximum clique for any Meyniel graph by using a simple rule for choosing which nodes are to be contracted. This O(n3) algorithm is much simpler than those already existing for Meyniel graphs. Moreover, the optimality of this algorithm for Meyniel graphs provides an alternate nice proof of the following result of Hoàng: a graph G is Meyniel if and only if, for any induced subgraph of G, each node belongs to a stable set that meets all maximal cliques. Finally we give a new characterization for Meyniel graphs.  相似文献   

12.
A k-coloring (not necessarily proper) of vertices of a graph is called acyclic, if for every pair of distinct colors i and j the subgraph induced by the edges whose endpoints have colors i and j is acyclic. We consider some generalized acyclic k-colorings, namely, we require that each color class induces an acyclic or bounded degree graph. Mainly we focus on graphs with maximum degree 5. We prove that any such graph has an acyclic 5-coloring such that each color class induces an acyclic graph with maximum degree at most 4. We prove that the problem of deciding whether a graph G has an acyclic 2-coloring in which each color class induces a graph with maximum degree at most 3 is NP-complete, even for graphs with maximum degree 5. We also give a linear-time algorithm for an acyclic t-improper coloring of any graph with maximum degree d assuming that the number of colors is large enough.  相似文献   

13.
We study backbone colorings, a variation on classical vertex colorings: Given a graph G and a subgraph H of G (the backbone of G), a backbone coloring for G and H is a proper vertex k-coloring of G in which the colors assigned to adjacent vertices in H differ by at least 2. The minimal kN for which such a coloring exists is called the backbone chromatic number of G. We show that for a graph G of maximum degree Δ where the backbone graph is a d-degenerated subgraph of G, the backbone chromatic number is at most Δ+d+1 and moreover, in the case when the backbone graph being a matching we prove that the backbone chromatic number is at most Δ+1. We also present examples where these bounds are attained.Finally, the asymptotic behavior of the backbone chromatic number is studied regarding the degrees of G and H. We prove for any sparse graph G that if the maximum degree of a backbone graph is small compared to the maximum degree of G, then the backbone chromatic number is at most .  相似文献   

14.
Let h denote the maximum degree of a connected graph H, and let χ(H) denote its chromatic, number. Brooks' Theorem asserts that if h ≥ 3, then χ(H) ≤ h, unless H is the complete graph Kh+1. We show that when H is not Kh+1, there is an h-coloring of H in which a maximum independent set is monochromatic. We characterize those graphs H having an h-coloring in which some color class consists of vertices of degree h in H. Again, without any loss of generality, this color class may be assumed to be maximum with respect to the condition that its vertices have degree h.  相似文献   

15.
A vertex k-coloring of graph G is distinguishing if the only automorphism of G that preserves the colors is the identity map. It is proper-distinguishing if the coloring is both proper and distinguishing. The distinguishing number ofG, D(G), is the smallest integer k so that G has a distinguishing k-coloring; the distinguishing chromatic number ofG, χD(G), is defined similarly.It has been shown recently that the distinguishing number of a planar graph can be determined efficiently by counting a related parameter-the number of inequivalent distinguishing colorings of the graph. In this paper, we demonstrate that the same technique can be used to compute the distinguishing number and the distinguishing chromatic number of an interval graph. We make use of PQ-trees, a classic data structure that has been used to recognize and test the isomorphism of interval graphs; our algorithms run in O(n3log3n) time for graphs with n vertices. We also prove a number of results regarding the computational complexity of determining a graph’s distinguishing chromatic number.  相似文献   

16.
A total k-coloring of a graph G is a coloring of V(G) ∪ E(G) using k colors such that no two adjacent or incident elements receive the same color.The total chromatic number χ〃(G) is the smallest integer k such that G has a total k-coloring.In this paper,it is proved that the total chromatic number of any graph G embedded in a surface Σ of Euler characteristic χ(Σ)≥0 is Δ(G) + 1 if Δ(G)≥10,where Δ(G) denotes the maximum degree of G.  相似文献   

17.
Baogang Xu 《Discrete Mathematics》2008,308(15):3134-3142
A circular-perfect graph is a graph of which each induced subgraph has the same circular chromatic number as its circular clique number. In this paper, (1) we prove a lower bound on the order of minimally circular-imperfect graphs, and characterize those that attain the bound; (2) we prove that if G is a claw-free minimally circular-imperfect graph such that ωc(G-x)>ω(G-x) for some xV(G), then G=K(2k+1)/2+x for an integer k; and (3) we also characterize all minimally circular-imperfect line graphs.  相似文献   

18.
Let F(n,e) be the collection of all simple graphs with n vertices and e edges, and for GF(n,e) let P(G;λ) be the chromatic polynomial of G. A graph GF(n,e) is said to be optimal if another graph HF(n,e) does not exist with P(H;λ)?P(G;λ) for all λ, with strict inequality holding for some λ. In this paper we derive necessary conditions for bipartite graphs to be optimal, and show that, contrarily to the case of lower bounds, one can find values of n and e for which optimal graphs are not unique. We also derive necessary conditions for bipartite graphs to have the greatest number of cycles of length 4.  相似文献   

19.
The clique number of an undirected graph G is the maximum order of a complete subgraph of G and is a well‐known lower bound for the chromatic number of G. Every proper k‐coloring of G may be viewed as a homomorphism (an edge‐preserving vertex mapping) of G to the complete graph of order k. By considering homomorphisms of oriented graphs (digraphs without cycles of length at most 2), we get a natural notion of (oriented) colorings and oriented chromatic number of oriented graphs. An oriented clique is then an oriented graph whose number of vertices and oriented chromatic number coincide. However, the structure of oriented cliques is much less understood than in the undirected case. In this article, we study the structure of outerplanar and planar oriented cliques. We first provide a list of 11 graphs and prove that an outerplanar graph can be oriented as an oriented clique if and only if it contains one of these graphs as a spanning subgraph. Klostermeyer and MacGillivray conjectured that the order of a planar oriented clique is at most 15, which was later proved by Sen. We show that any planar oriented clique on 15 vertices must contain a particular oriented graph as a spanning subgraph, thus reproving the above conjecture. We also provide tight upper bounds for the order of planar oriented cliques of girth k for all .  相似文献   

20.
A colored mixed graph has vertices linked by both colored arcs and colored edges. The chromatic number of such a graph G is defined as the smallest order of a colored mixed graph H such that there exists a (arc-color preserving) homomorphism from G to H. We study in this paper the colored mixed chromatic number of planar graphs, partial 2-trees and outerplanar graphs with given girth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号