首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we show that the complete symmetric directed graph with n vertices Kn1 admits an almost resolvable decomposition into TT3 (the transitive tournament on 3 vertices) or C3 (the directed cycle of length 3) if and only if n ≡ 1(mod 3).  相似文献   

2.
For a > 0 let ψa(x, y) = ΣaΩ(n), the sum taken over all n, 1 ≤ nx such that if p is prime and p|n then a < py. It is shown for u < about (log log xlog log log x) that ψa(x, x1u) ? x(log x)a?1pa(u), where pa(u) solves a delay differential equation much like that for the Dickman function p(u), and the asymptotic behavior of pa(u) is worked out.  相似文献   

3.
It is shown that K2m1, 2m ≥ 8, can be decomposed into Hamiltonian circuits. A direct construction utilizing difference methods is given for 2m ≡ 0 (mod 4). The case 2m ≡ 2 (mod 4) is handled inductively by means of a construction which shows that K4m ? 21 admits such a decomposition if K2m1 does.  相似文献   

4.
Let k be a positive square free integer, N(?k)12 the ring of algebraic integers in Q(?k)12 and S the unit sphere in Cn, complex n-space. If A1,…, An are n linearly independent points of Cn then L = {u1Au + … + unAn} with ur ∈ N(?k)12 is called a k-lattice. The determinant of L is denoted by d(L). If L is a covering lattice for S, then θ(S, L) = V(S)d(L) is the covering density. L is called locally (absolutely) extreme if θ(S, L) is a local (absolute) minimum. In this paper we determine unique classes of extreme lattices for k = 1 and k = 3.  相似文献   

5.
Let S be a Dirichlet form in L2(Ω; m), where Ω is an open subset of Rn, n ? 2, and m a Radon measure on Ω; for each integer k with 1 ? k < n, let Sk be a Dirichlet form on some k-dimensional submanifold Ωk of Ω. The paper is devoted to the study of the closability of the forms E with domain C0(Ω) and defined by: (?,g)=E(?, g)+ ip=1Eki(?ki, gki) where 1 ? kp < ? < n, and where ?ki, gki denote restrictions of ?, g in C0(Ω) to Ωki. Conditions are given for E to be closable if, for each i = 1,…, p, one has ki = n ? i. Other conditions are given for E to be nonclosable if, for some i, ki < n ? i.  相似文献   

6.
For matrices A, C?Cnxn , the C-numerical radius of A is the nonnegative quantity
rc(A)=max{|tr(CU1AU)|:Uunitary}
. This generalizes the classical numerical radius r(A). It is known that rc constitutes a norm on Cnxn if and only if C is nonscalar and trC≠0. For all such C we obtain multiplicativity factors for rc, i.e., constant μ>0 for which μrc is submultiplicative on Cnxn.  相似文献   

7.
In this paper we give necessary and sufficient conditions in order that Km,n (Km,n1) admits a decomposition into 2k-cycles (2k-circuits). This answers conjectures of J. C. Bermond (Thesis, Paris XI (Orsay), 1975) and J. C. Bermond and V. Faber (J. Combinatorial Theory Ser. B21 (1976), 146–155).  相似文献   

8.
This paper is a study of the distribution of eigenvalues of various classes of operators. In Section 1 we prove that the eigenvalues (λn(T)) of a p-absolutely summing operator, p ? 2, satisfy
n∈Nn(T)|p1pp(T).
This solves a problem of A. Pietsch. We give applications of this to integral operators in Lp-spaces, weakly singular operators, and matrix inequalities.In Section 2 we introduce the quasinormed ideal Π2(n), P = (p1, …, pn) and show that for TΠ2(n), 2 = (2, …, 2) ∈ Nn, the eigenvalues of T satisfy
i∈Ni(T)|2nn2n2(T).
More generally, we show that for TΠp(n), P = (p1, …, pn), pi ? 2, the eigenvalues are absolutely p-summable,
1p=i=1n1piandn∈Nn(T)|p1p?CpπnP(T).
We also consider the distribution of eigenvalues of p-nuclear operators on Lr-spaces.In Section 3 we prove the Banach space analog of the classical Weyl inequality, namely
n∈Nn(T)|p ? Cpn∈N αn(T)p
, 0 < p < ∞, where αn denotes the Kolmogoroff, Gelfand of approximation numbers of the operator T. This solves a problem of Markus-Macaev.Finally we prove that Hilbert space is (isomorphically) the only Banach space X with the property that nuclear operators on X have absolutely summable eigenvalues. Using this result we show that if the nuclear operators on X are of type l1 then X must be a Hilbert space.  相似文献   

9.
Let Fn be the ring of n × n matrices over the finite field F; let o(Fn) be the number of elements in Fn, and s(Fn) be the number of singular matrices in Fn. We prove that o(Fn)<s(Fn)1+1n(n-1) if n ? 2, and if n = 2 and o(F) ? 3, then s(Fn)1 + 1n2<o(Fn)<s(Fn)1+1n(n-1).  相似文献   

10.
The explicit lower bound due to Furtwangler of Cn, the n-dimensional Diophantine approximation constant is Cn1Δn+112, where Δn+1 is the minimum absolute discriminant of a real number field of degree n+1; Cn(169)[n4]Δn+112, n = 1, 2, 3, …, is obtained, where [x] is the integer part of the real number x. The number 1 in the Furtwangler inequality is (explicitly) improved for all n ≥ 4.  相似文献   

11.
Given a set S of positive integers let ZkS(t) denote the number of k-tuples 〈m1, …, mk〉 for which mi ∈ S ? [1, t] and (m1, …, mk) = 1. Also let PkS(n) denote the probability that k integers, chosen at random from S ? [1, n], are relatively prime. It is shown that if P = {p1, …, pr} is a finite set of primes and S = {m : (m, p1pr) = 1}, then ZkS(t) = (td(S))k Πν?P(1 ? 1pk) + O(tk?1) if k ≥ 3 and Z2S(t) = (td(S))2 Πp?P(1 ? 1p2) + O(t log t) where d(S) denotes the natural density of S. From this result it follows immediately that PkS(n) → Πp?P(1 ? 1pk) = (ζ(k))?1 Πp∈P(1 ? 1pk)?1 as n → ∞. This result generalizes an earlier result of the author's where P = ? and S is then the whole set of positive integers. It is also shown that if S = {p1x1prxr : xi = 0, 1, 2,…}, then PkS(n) → 0 as n → ∞.  相似文献   

12.
An n-tournament is a complete labelled digraph on n vertices without loops or multiple arcs. A tournament's score sequence is the sequence of the out-degrees of its vertices arranged in nondecreasing order. The number Sn of distinct score sequences arising from all possible n-tournaments, as well as certain generalizations are investigated. A lower bound of the form
Sn > C14nn52
(C1 a constant) and an upper bound of the form Sn < C24nn2 are proved. A q-extension of the Catalan numbers
c1(q)=1 and cn(q)=i?1n?1ci(q)cn?1(q)qi(n?i?1)
is defined. It is conjectured that all coefficients in the polynomial Cn(q) are at most O(4nn3). It is shown that if this conjecture is true, then
Sn<C34nn52
  相似文献   

13.
Let α ? 0 and let D(α) = {f(z) = ∑0αnzn ¦ ∑0 (n + 1)α¦ an ¦ < ∞}. Then D(α) is a subalgebra of l1. We discuss the weak-1 generators of D(α). We use some of our techniques to prove that if ? is a weak-1 generator of H and ∥ ? ∥ ? 1, then the composition operator C? on the Dirichlet space has dense range.  相似文献   

14.
The coefficients aτ?, sometimes called “generalized binomial coefficients” in the expansion C?1(V +I) = ΣτaCτ1(V), are computed explicitly when t = r + 1, where ? is a partition of r and τ a partition of t. A recursion formula permits the calculation of the general aτ?. Several properties of aτ? are proved. A connection between the aτ? and other coefficients is established. The main tools used are Bingham's identity, results from the theory of invariant differential operators, and a lemma concerning zonal polynomials.  相似文献   

15.
Affine and combinatorial properties of the polytope Ωn of all n × n nonnegative doubly stochastic matrices are investigated. One consequence of this investigation is that if F is a face of Ωn of dimension d > 2, then F has at most 3(d?1) facets. The special faces of Ωn which were characterized in Part I of our study of Ωn in terms of the corresponding (0, 1)- matrices are classified with respect to affine equivalence.  相似文献   

16.
Properties of the graph G(Ωn) of the polytope Ωn of all n × n nonnegative doubly stochastic matrices are studied. If F is a face of Ωn which is not a k-dimensional rectangular parallelotope for k ≥ 2, then G(F) is Hamilton connected. Prime factor decompositions of the graphs of faces of Ωn relative to Cartesian product are investigated. In particular, if F is a face of Ωn, then the number of prime graphs in any prime factor decomposition of G(F) equals the number of connected components of the neighborhood of any vertex of G(F). Distance properties of the graphs of faces of Ωn are obtained. Faces F of Ωn for which G(F) is a clique of G(Ωn) are investigated.  相似文献   

17.
The absolute Kähler module Ωwn(k) of the truncated generalized Witt vectors of a field k of positive characteristic is zero if and only if k is perfect. This recovers known information on K2(k[t](tn)) with which the structure of K2(k((t))) can be studied.  相似文献   

18.
In a previous paper it was proven that given the continued fractions
A = a1+1a2+1a3+… and B = b1+1b2+1b3+…
where the a's and b's are positive integers, then A, B, A ± B, AB and AB are irrational numbers if an2 > bn > an?15n for all n sufficiently large, and transcendental numbers if an2 > bn > an?19n3 for all n sufficiently large. Using a more direct approach it is proven in this paper that A, B, A ± B, AB and AB are transcendental numbers if an > bn > an?1(n?1)2 for all n sufficiently large.  相似文献   

19.
For any tournament T on n vertices, let h(T) denote the maximum number of edges in the intersection of T with a transitive tournament on the same vertex set. Sharpening a previous result of Spencer, it is proved that, if Tn denotes the random tournament on n vertices, then, P(h(Tn) ≤ 12(2n) + 1.73n32) → 1 as n → ∞.  相似文献   

20.
Let Ω = {1, 0} and for each integer n ≥ 1 let Ωn = Ω × Ω × … × Ω (n-tuple) and Ωnk = {(a1, a2, …, an)|(a1, a2, … , an) ? Ωnand Σi=1nai = k} for all k = 0,1,…,n. Let {Ym}m≥1 be a sequence of i.i.d. random variables such that P(Y1 = 0) = P(Y1 = 1) = 12. For each A in Ωn, let TA be the first occurrence time of A with respect to the stochastic process {Ym}m≥1. R. Chen and A.Zame (1979, J. Multivariate Anal. 9, 150–157) prove that if n ≥ 3, then for each element A in Ωn, there is an element B in Ωn such that the probability that TB is less than TA is greater than 12. This result is sharpened as follows: (I) for n ≥ 4 and 1 ≤ kn ? 1, each element A in Ωnk, there is an element B also in Ωnk such that the probability that TB is less than TA is greater than 12; (II) for n ≥ 4 and 1 ≤ kn ? 1, each element A = (a1, a2,…,an) in Ωnk, there is an element C also in Ωnk such that the probability that TA is less than TC is greater than 12 if n ≠ 2m or n = 2m but ai = ai + 1 for some 1 ≤ in?1. These new results provide us with a better and deeper understanding of the fair coin tossing process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号