首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The mechanisms of proton transfer in associates of two molecules of formic acid with two molecules of water or hydrogen fluoride were studied usingab initio (SCF/6-31G**) method. Cooperative (concerted, or one-step) four-proton transfer occurs in the associates studied. The structures of the transition states are in complete agreement with the previously proposed concept of stereochemical correspondence for cooperative reactions. The calculated energy barriers to cooperative proton transfer in the associates investigated are 32.9 and 24.2 kcal mol–1, respectively.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2636–2640, November, 1996.  相似文献   

2.
3.
Ab initio calculations of fragments of the potential energy surfaces of hydrogen exchange reactions between H2, CH4, and alanine molecules and the H3O+ ion were performed by the restricted Hartree-Fock method, at the second-order Møller-Plesset level of perturbation theory, and by the method of coupled clusters using the 6–31G* and aug-cc-pVDZ basis sets. The one-center synchronous mechanism of hydrogen exchange reaction was studied and the activation energies and structures of transition states were determined. It was found that the geometric parameters of the H2 and CH4 molecules in the transition states are close to those of the H3 + and CH5 + ions. The higher the proton affinity of the reacting molecule in the reaction studied the lower the activiation energy of hydrogen exchange. The one-center mechanism studied can be used to describe the high-temperature solid-state catalytic isotope exchange (HSCIE) reaction. The results ofab initio calculations of synchronous hydrogen exchange between the H3O+ ion and hydrogen atoms in different positions of the alanine molecule are in good agreement with experimental data on the regioselectivity and stereoselectivity of the HSCIE reaction with spillover-tritium.  相似文献   

4.
Anab initio MO method has been used to calculate the potential energy surface for the formation of HF when H reacts with C1F. The various transition states possibly related to forming HF were optimized. An IRC calculation starting from the collinear F-centered transition state was performed and energies of a series of points with bending configurations were also calculated to determine the direct reaction path leading to HF product. Another IRC calculation starting from the H-centered transition state was run to determine the migratory path to forming HF. By doing so, the Polanyi’s assumption that it would involve the direct and a migratory mechanisms for the formation of HF when H reacts with CIF has been verified theoretically. Project supported by the National Natural Science Foundation of China.  相似文献   

5.
A simplified method for molecular correlation energy calculations developed in I is applied to the determination of the potential curves of some diatomic chlorinated molecules HCl(1+), HCl+(2II), ClO(2II) and NCl(X 3, a 1, b 1+). Dissociation energies, vibrational frequencies and equilibrium internuclear distances are derived from these curves. The ionisation potential (I p) of HCl, the proton affinity (PA) of Cl, and the term energies of the excited states of the NCl radical are also calculated. It is shown that the results are very sensitive to correlation effects and that the correlated results converge to the corresponding experimental values within 10% for PA, D e , T e and e, 2% for R e and 0.3% for I p. This agreement allows us to predict the following lower limits for the dissociation energies of the NCl radical: 2.14, 3.28 and 2.47 eV respectively for the X3, a 1 and b 1+ states. Results on HF and HF+ are also discussed and compared with those obtained for HCl and HCl+.Boursier IRSIA  相似文献   

6.
Reaction of high-temperature solid-state catalytic isotope exchange (HSCIE) of hydrogen in L-hydroxyproline was studied byab initio quantum-chemical calculations. A one-center synchronous mechanism of isotope exchange between the amino acid and the H3O+ model acidic center was considered. The structures of transition states of the reaction and the activation energies were determined. Relative reactivity of the C−H bonds in the hydroxyproline molecule under conditions of HSCIE was studied. The results obtained are in agreement with experimental data on the stereoselectivity and regioselectivity of the HSCIE reaction,viz., the lower the calculated activation energy of isotope exchange, the larger the portion of hydrogen substituted by tritium in a given position of the amino acid molecule. The enhancement of the reactivity under conditions of solid-state isotope exchange can be associated with additional interaction between the exchanging H atoms and the electron-donor O and N atoms of the amino acid molecule in transition state. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1056–1060, June, 1999.  相似文献   

7.
Ab initio studies (LCAO-MO method) on conformers of three seleno derivatives of the biuret molecules diselenobiuret [I], selenobiuret [II], and selenothiobiuret [III] were carried out at the Hartree-Fock (HF) and MP2 levels. The molecular geometries of these species were fully optimized at the HF level and characterized by analysis of the harmonic vibrational frequencies using a split-valence triple-zeta basis set augmented by a set ofd polarization functions on heavy atoms andp polarization functions on hydrogen atoms [TZP(d, p)]. The total energies of the HF-optimized structures were calculated at the MP2 (frozen core) level using a larger TZP (2df, 2pd) basis set. The potential energy searches revealed a total of 11 minimum-energy conformers (assigned astrans-trans, trans-cis, cis-trans, andcis-cis) and seven transition-state species for the title molecules. The two predicted conformers for diselenobiuret (Ia=trans-trans andIc=cis-cis) are characterized byC 2 and the third byC s symmetry. For selenothiobiuret two forms (IIIa=trans-trans andIIId=cis-cis) possessC 1 and two (IIIb=trans-cis andIIIc=cis-trans) possessC s symmetries, respectively. For selenobiuret, four formsIIa=trans-trans (C1),IIb=trans-cis (C s),IIc=cis-trans (C 1), andIId=cis-cis (C1), were obtained as a result of gradient optimization. Comparison of the relative energies for the considered species indicated that thecis-trans forms are the most stable conformations for all three systems at both the HF and MP2 levels of theory.  相似文献   

8.
The mechanisms of the proton transfer in associates of two molecules of formic acid with one molecule of hydrazine or hydrogen peroxide were studied usingab initio (SCFj6-31G**) method. The mechanism of cooperative (concerted, one-step) four-proton transfer is realized in the associate with the hydrazine molecule. The proton transfer occurs stepwisevia an intermediate in the associate with a hydrogen peroxide molecule. The calculated activation barriers to the proton transfer in the associates investigated are 34.7 kcal mol–1 and 27.1 kcal mol–1, respectively.Translated fromlzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2631–2635, November, 1996.  相似文献   

9.
This paper presents calorimeter measurement for the thermal decomposition of n-propyl nitrate (NPN), isopropyl nitrate (IPN) and 2-ethylhexyl nitrate (EHN). Similar experimental results of triethylene glycol dinitrate (tri-EGDN) and tetraethylene glycol dinitrate (tetra-EGDN) are included for comparison. The potential energy surfaces (PESs) along O-NO2 bond stretch are investigated using the DFT (B3P86, B3PW91 and B3LYP), ab initio Hartree-Fock and PM3 methods. The good coincidence of experimental with theoretical results indicates that initial stage in the thermal decomposition of five nitrates is only unimolecular homolytical dissociation of the O-NO2 bonds and the activation energies of thermolysis by DSC correspond to the energies of O-NO2 bond scission of nitrates.  相似文献   

10.
A comparative quantum chemical analysis has been made for the most stable dimer of nitrogen oxide with the structure cis-ONNO in a singlet state 1A1 by ab initio method of SCF MO LCAO, allowing for electron correlation according to Meller-Plesset perturbation theory of the second order (MP2), and density functional technique (DFT). The computations by MP2 method show anion-radical (ONNO)? to have a strong bond between nitrogen atoms (N-N 1.44 Å) in contrast to molecular weakly bound cis-dimer with equilibrium distance N-N 2.23 Å. Molecular orbital structure of the dimer and its anions was examined that made it possible to suggest a reason of preferable stabilization of nitrogen oxide dimer in the cis-form. Calculated high affinity to electron (Ea = ?1.55-?1.69 eV) for the molecular dimer ONNO (1A1) explains an intense strengthening of N-N bond in anion-radical and confirms the experimental data on a possibility of surface anion-π-radical formation on electron donor centers. The DFT computations indicate that this technique poorly reproduces the experimental geometry and electron structure of the cis-dimer ONNO having predicted a triplet ground state with the equilibrium distance N-N ≈2 Å instead of a singlet one with N-N 2.26 Å. The comparison between MP2 and DFT calculations for complex dimer ONNO with copper cation reveals the energy state of the complex (Cu-O2N2)+ corresponding to stabilization of anion-π-radical (N2O2)? {term-3A2, Cu(d)9-(ONNO)?1} to be highly overestimated by DFT.  相似文献   

11.
The compounds ZR4 with R=H, CH3, and Z=C, Si, Ge, Sn or Pb have been studied in high-quality Hartree-Fock calculations. Relativistic effects have been accounted for, using the Breit-Pauli Hamiltonian and first-order perturbation theory. Relativity causes a shortening of the Z-R distance of up to 10 pm in PbH4, whereas the effect on the breathing force constant is more complex.  相似文献   

12.
Summary The potential curve of the ground state dissociation of Li-F in water has been studied by a combination of a standardab initio Hartree-Fock procedure and a perturbative reaction field approach. The electrostatic solute-solvent interaction is accounted for by the generalized Born formalism introduced through a perturbation approach. The calculations were carried out at a 6–311+G* basis set level. Diffuse functions ofs symmetry were included to model a desolvation potential. A double well potential curve was obtained for the dissociation of this molecule in the presence of a highly polarizable medium. The first minimum, corresponding to an ion pair, electrostatically bound, is found at aR(Li-F)<6.0 Å distance. As the two ions come together, a desolvation barrier of about 30 kcal/mol is to be overcome before the formation of the neutral Li-F at 1.56 Å. The barrier to ionization towards the ion pair is calculated to be about 14 kcal/mol. The dissociation of the ion pair towards the free ions is discussed in terms of the electrostatic solvation entropy changes.Contribution No 6 from Centro de Mecánica Cuantica Aplicada (CMCA)  相似文献   

13.
The complex doublet potential energy surface of the CHClNO system, including 31 minimum isomers and 84 transition states, is investigated at the QCISD(T)/6-311G(d, p)//B3LYP/6-31G(d, p) level in order to explore the possible reaction mechanism of the singlet CHCl with NO. Various possible isomerization and dissociation channels are probed. The initial association between 1CHCl and NO at the terminal N-site can almost barrierlessly lead to the chainlike adducts HClCNO a (a1, a2) followed by the direct Cl-extrusion to product P9 Cl + HCNO, which is the most feasible channel. Much less competitively, a (a1, a2) undergoes a ring-closure leading to the cyclic isomer c-C(HCl)NO d followed by a concerted Cl-shift and N-O cleavage of d to form the branched isomers ClNC(H)O f (f1, f2). Eventually, f (f1, f2) may take a direct H-extrusion to produce P7 H + ClNCO or a concerted 1,2-H-shift and Cl-extrusion to form P1 Cl + HNCO. The low-lying products P2 HCl + NCO, P3 Cl + HOCN, P14 HCO + 3NCl, P6 ClO + HCN, and P13 ClNC + OH may have the lowest yields observed. Our calculations show that the product distributions of the title reaction are quite different from those of the analogous 1CHF + NO reaction, yet are similar to those of another analogous 3CH2 + NO reaction. The similarities and discrepancies among the three reactions are discussed in terms of the substitution effect. The present article may assist in future experimental identification of the product distributions for the title reaction and may be helpful for understanding the halogenated carbene chemistry.  相似文献   

14.
The ab initio molecular fragment approach is applied to a characterization study of the ground state of the zwitterion of glycine. Included among the properties studied are the conformational energy surface, the electronic structure, and the magnitude and direction of the dipole moment. The results of the present study are compared to the results of other theoretical and experimental studies.This work was supported in part by the National Science Foundation, the University of Kansas, and the Upjohn Company, Kalamazoo, Michigan 49001.NSF Trainee (1969-1972).Alfred P. Sloan Research Fellow (1971–1973).  相似文献   

15.
F+CH_3OH碰撞反应机机理和反应势能面   总被引:1,自引:0,他引:1  
陈德展  杨仲年  王道平  孟琳 《化学学报》2003,61(8):1213-1219
以MP2(full)/6-311 + +g(d,p)水平上详细研究了氟原子与甲醇抽氢反应的 多通道反应机理,得到了各条通道中涉及的驻点的构型和振动频率及其能量,给出 了两张完整的反应势能面,结果表明,氟原子从C原子上抽氢时有一条明显的最低 能量通道,而从氧原子上抽氢时要涉及多条分支通道和多个驻点构型,给出了各分 支通道势能面示意图,结果表明以形成五元环状过渡态通道为优势通道,计算得到 经途径1生成CH_2OH时反应放热170.62kJ/mol,经分支途径6生成CH_3O自由基时反 应放热119.4 kJ/mol,此结果与实验值一致。  相似文献   

16.
The radical-molecule reaction mechanism of CH3 with NOx (x = 1, 2) has been explored theoretically at the B3LYP/6-311Gd,p and MC-QCISD (single-point) levels of theory. For the singlet potential energy surface (PES) of the CH3 + NO2 reaction, it is found that the carbon to middle nitrogen attack between CH3 and NO2 can form energy-rich adduct a (H3CNO2) with no barrier followed by isomerization to b1 (CH3ONO-trans), which can easily convert to b2 (CH3ONO-cis). Subsequently, starting from b (b1, b2), the most feasible pathway is the direct N-O bond cleavage of b (b1, b2) leading to P1 (CH3O + NO) or the 1,3-H-shift and N-O bond rupture of b1 to form P2 (CH2O + HNO), both of which may have comparable contribution to the reaction CH3 + NO2. Much less competitively, b2 can take a concerted H-shift and N-O bond cleavage to form product P3 (CH2O + HON). Because the intermediates and transition states involved in the above three channels are all lower than the reactants in energy, the CH3 + NO2 reaction is expected to be rapid, as is consistent with the experimental measurement in quality. For the singlet PES of the CH3 + NO reaction, the major product is found to be P1 (HCN + H2O), whereas the minor products are P2 (HNCO + H2) and P3 (HNC +H2O). The CH3 + NO reaction is predicted to be only of significance at high temperatures because the transition states involved in the most feasible pathways lie almost above the reactants. Compared with the singlet pathways, the triplet pathways may have less contributions to both reactions. The present study may be helpful for further experimental investigation of the title reactions.  相似文献   

17.
Ab initio MO calculations are performed on a series of ion-molecular and ion pair-molecular complexes of H2O + MX (MX = LiF, LiCl, NaCl, BeO and MgO) systems. BSSE-corrected stabilization energies, optimized geometrical parameters, internal force constants and harmonic vibrational frequencies have been evaluated for all the structures of interest. The trends observed in the geometrical parameters and other properties calculated for the mono-hydrated contact ion pair complexes parallel those computed for the complexes of the individual ions. The bifurcated structures are found to be saddle points with an imaginary frequency corresponding to the rocking mode of water molecules. The solventshared ion pair complexes have high interaction energies. Trends in the internal force constant and harmonic frequency values are discussed in terms of ion-molecular and ion-pair molecular interactions.  相似文献   

18.
Ab initio global adiabatic as well as quasidiabatic potential energy surfaces for the ground and the first excited electronic states of the H+ + CO system have been computed as a function of the Jacobi coordinates (Rrγ) using Dunning’s cc-pVTZ basis set at the internally contracted multi-reference (single and double) configuration interaction level of accuracy. In addition, nonadiabatic coupling matrix elements arising from radial motion, mixing angle and coupling potential have been computed using the ab initio procedure [Simah et al. (1999) [66]] for the purpose of dynamics study. The geometrical properties corresponding to the minimum energy of the bound HCO+ and HOC+ isomers have been obtained and compared with those predicted by previous theoretical and experimental results. The HCO+ has been found to be more stable than the HOC+. The minimum energy pathway in the ground electronic state for the isomerization process, HCO+ ? HOC+ has also been obtained as a function of γ.  相似文献   

19.
The complex doublet potential energy surface for the reaction of 1CHF with NO2, including 14 minimum isomers and 30 transition states, is explored theoretically at the B3LYP/6-311G(d,p) and CCSD(T)/6-311G(d,p) (single-point) levels of theory. The initial association between 1CHF and NO2 is found to be the carbon-to-middle-nitrogen attack forming an energy-rich adduct a (HFCNO2) with no barrier, followed by concerted O-shift and C--N bond rupture leading to product P2 (NO + HFCO), which is the most abundant. In addition, a can take a 1,3-H-shift to isomer b (FCN(O)OH) followed by the dissociation to form the second feasible product P4 (OH + FCNO). The least favorable pathway is that b undergoes a concerted OH-shift to form d (HO(F)CNO), which will dissociate to product P5 (HF+OCNO) via side HF-elimination. The secondary dissociation of P5 may form product P7 (HF+NO+CO) easily. Furthermore, the 1CHF attack at the end-O of NO2 is a barrier-consumed process, and thus may only be of significance at high temperatures. The comparison with the analogous reactions 1CHCl + NO2 is discussed. The present study may be helpful for probing the mechanism of the title reaction and understanding the halogenated carbine chemistry.  相似文献   

20.
The potential energy surface for the reaction of the CF3O radicals with CO was investigated. The geometries and vibrational frequencies of the reactants, transition states, intermediates, and products were calculated at the UB3LYP/6-311+G(2d,p), UB3LYP/6-311+G(3df,2p) and UMP2/6-311+G(2d,p) levels of theory. The energies were improved by using the G2M(CC2) and G3B3 methods. The calculation suggests the reaction proceeds via either the fluorine abstraction of CF3O by CO to produce FCO + CF2O with a high energy barrier or the barrierless association of the reactants to form the trans-CF3OCO intermediate. The trans-CF3OCO is predicted to undergo subsequent isomerization to cis-CF3OCO or dissociate directly to the products FCO + CF2O and CF3 + CO2. The collisional stabilization of trans-CF3OCO is dominant at room temperature, while trans-CF3OCO isomerizing to cis-CF3OCO followed by dissociating to CF3 + CO2 is accessible when temperature rises. The reason for only trans-CF3OCO without cis-CF3OCO observable in Ashen’s experiment [S.V. Ahsen, J. Hufen, H. Willner, J.S. Francisco, Chem. Eur. J. 8 (2002) 1189] is cis-CF3OCO can be produced only via the isomerization of trans-CF3OCO, and its yield is inappreciable at a low experimental temperature. The enthalpies of formation for the two conformations of CF3OCO have been deduced: (trans-CF3OCO) = −196.25 kcal mol−1, (trans-CF3OCO) = −197.46 kcal mol−1, (cis-CF3OCO) = −193.64 kcal mol−1, and (cis-CF3OCO) = −194.90 kcal mol−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号