首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The band texture occurs in lyotropic and thermotropic main-chain polymers after cessation of flow. This paper begins with a review of work concerned with band texture formation following shear and is followed by the presentation of original results obtained during a recent investigation. The evolution of band texture formation in a Klucel EF, 50% hydroxypropylcellulose (HPC) water solution, has been observed using polarized optical microscopy. The relationship determined between the primary shear rate and the rate of evolution of the band texture is complex and three different behaviours have been observed corresponding to three shear rate regions. Both steady flow and dynamic rheological investigations have been conducted on the HPC solution, the results of which have been related to the optical behaviour of the band texture. Data from steady flow investigations suggest that the viscosity of the solution when the band texture is present, decreases following increasing primary shear rates, is shear thinning and increases linearly with the time following its formation. Dynamic investigations suggest a definite link between the band texture evolution and the evolution of both G′ and G′′. In addition, the perfection of the band texture versus the primary shear rate has been quantified by studying the evolution of tan(δ) following the cessation of the primary shear. Dynamic experiments show that the structure of the band texture remains longer than suggested by the optical aspect of the texture. Small angle light scattering patterns have been correlated with the development of the band texture and confirm the continuing presence of the band texture structure following its optical disappearance. Received: 2 March 1999/Accepted: 26 July 1999  相似文献   

2.
Nearly all the available information on the transient flow behaviour of liquid crystalline polymers has been obtained on model systems, especially on solutions of polybenzylglutamate (PBG) and hydroxypropylcellulose (HPC). The assessment of rheological models has been based almost entirely on these model systems. It is not clear how much of the available theoretical and experimental knowledge can be applied to systems of industrial relevance, which have quite different molecular structures. Here, an industrial lyotropic system, poly(p-phenylenetherephthalamide) (PpPTA) in sulphuric acid (TWARON from AKZO), is investigated. Various techniques to study transient behaviour are used, these include measurements of transient shear and normal stresses after sudden changes in shear rate, dynamic moduli and stress relaxation after cessation of flow and elastic recoil. At all shear rates studied the PpPTA solution is shear thinning, and the first normal stress difference remains positive. For the stress transients a strain scaling applies reasonably well as it did in model systems. The moduli increase with time upon cessation of flow, indicating that the molecules become less oriented in the previous flow direction. This particular behaviour is similar to that of HPC. Transients also resemble more closely those of HPC rather than those of PBG. This latter difference might be attributed to the higher flexibility of HPC and PpPTA chains as compared with PBG molecules.  相似文献   

3.
The optical evolution of the band texture occurring in acetoxypropylcellulose thermotropic polymer has been investigated as a function of temperature and primary shear rate. Two distinct kinds of band texture were observed which are referred to here as the `fast' and `slow' band textures with regard to their rate of evolution. The fast band texture appears very quickly following the cessation of shear and then disappears. The slow band texture is much finer than the fast band texture and appears to exist both during and after the appearance of the fast band texture. The evolution behaviour of the fast band texture is interpreted in terms of the shifting of a three-region evolution curve. Particular attention has been paid to investigating the influence of temperature on the formation of the fast band texture. Rheo-optical experiments show that the minimum shear rate required to form the fast band texture increases as a power-law function of the temperature. By subsequently performing steady flow measurements over a range of temperatures, the minimum shear stress required to form the fast band texture has been found to be independent of temperature and to increase linearly with the molecular weight of the sample. Results obtained from dynamic tests are compared with similar tests conducted previously on a lyotropic hydroxypropylcellulose water solution (Harrison and Navard 1999). The results of the comparison provide evidence in support of a connection between the behaviour of the dynamic functions and the optical evolution of the slow band texture. These results suggest that nematic and cholesteric fluids can relax through several different possible mechanisms, each of which results in a periodic band texture following the cessation of shear. Received: 2 March 1999/Accepted: 26 July 1999  相似文献   

4.
The effect of fillers on the flow curves of polymeric liquid crystals is investigated. Suspensions of polystyrene particles in liquid crystalline solutions of hydroxypropylcellulose (HPC) in water are used. By reducing the HPC concentration an isotropic solution can be prepared. It serves as a reference to isolate the effect of the isotropic/anisotropic structure of the suspending medium on the rheological behaviour. Suspensions in the isotropic solution behave as expected for filled viscoelastic matrices in general. In the anisotropic medium the shear rate rather than the shear stress seems to govern the changes in the relative viscosity. This behaviour is clearly different from isotropic viscoelastic media. The most dramatic effect however is that even small amounts of particles eliminate or drastically shift the region of negative normal stress differences. As far as the structure is concerned, microscopic observations show that particles align in anisotropic as well as in isotropic media. At rest or at relatively low shear stresses the liquid crystalline structure is, in the present case, hardly affected by the presence of the particles. If anything, it becomes more homogeneous. Received: 28 April 1998 Accepted: 28 July 1998  相似文献   

5.
The effect of a shear flow on the early stages and the kinetics of isothermal crystallization of an isotactic polypropylene has been studied experimentally. In the shear rate region where crystallization proceeds through point-like precursors, the magnitude of the shear rate, the shearing time as well as the instant in time at which the deformation starts have all been varied, in combination with rheooptical measurements. These include depolarized light intensity and birefringence. In agreement with previous work, above a critical shear rate and a critical shearing time, the crystallization kinetics are enhanced. Somewhat surprisingly, below a characteristic time, t0,max, the kinetics are not affected by the instant in time at which flow is applied or stops. As long as flow takes place before this critical dwell time, only the shearing time and primarily the magnitude of the shear rate seem to matter. When flow is started only after t0,max, its effect to accelerate crystallization kinetics becomes less efficient. The range over which the different parameters have an effect have been compared to the rheological relaxation times and to the measurements of global chain extension. To investigate the effects of flow on the early stages in more detail, time resolved Small-Angle Light Scattering experiments were used to detect changes in the density and orientation fluctuations. Measurements explicitly compare the effect of temperature and shear flow on the kinetics and the intensity of the density fluctuations.Electronic supplementary material to this paper can be obtained by using the Springer Link server located at  相似文献   

6.
In this paper, The drag reduction characteristics of surfactant solutions have been experimentally studied, as well as, the shear viscosities of turbulent drag-reducing surfactant solution have been measured as a function of concentration, shear rate and temperature by using AG-G2 (TA Instruments, New Castle, USA) rheometer. In comparison the rheological property with the macroscopic behavior of the solutions in turbulent channel flow, a deeper insight into the mechanisms of drag-reducing surfactant solution has been obtained. For no shear induced structure of surfactant solutions they just show features shear thinning, but the drag reduction is very significant phenomenon. Surfactant solution of the shear induced structure is not a surfactant fluid drag reduction of the necessary elements.  相似文献   

7.
We have found in this study, by means of steady and dynamic rheometry, that Aerosil® R816 particles, in which hydroxyl groups have been mostly substituted by alkyls groups, form nonflocculated suspensions in polypropylene glycol, in comparison to what was expected from previous studies. Steady flow curve shows shear-thickening behavior between two shear-thinning regions. The transient rheological response has been analyzed using a protocol proposed a long time ago by Cheng (Rheol Acta 25:542–554, 1986). It has been found that, within the reversible shear-thickening region, all the constant structure curves overlap, which suggests that the response at a certain shear rate does not depend significantly on the previous state. As a consequence, this protocol is proposed as an alternative technique for distinction between flocculated and nonflocculated suspensions.  相似文献   

8.
润滑力学中非牛顿流动的普遍Reynolds方程   总被引:5,自引:0,他引:5  
杨沛然  温诗铸 《力学学报》1991,23(3):283-289
本文导出了润滑力学中关于非牛顿流动的普遍 Reynolds 方程。这一方程适用于多种非牛顿流动模型,可以用于解算热流体动力润滑或热弹性流体动力润滑膜的压力分布。本文给出了一种同时求出剪应力、剪切率、速度和等效粘度的解法,并以两种润滑力学中常用的流变模型为例,应用这一方程得到了线接触热弹性流体动力润滑问题的数值解。  相似文献   

9.
A wavy texture occurs in the flows of liquid crystalline polymers through a slit cell. In the present paper the development of the wavy texture is examined in pressure-driven startup flows for four types of slit cells, using a liquid crystalline solution of 50 wt% hydroxypropylcellulose (HPC). There exists a comparatively long induction period until the wavy texture appears after the startup of the flow, and the induction time decreases with increasing apparent shear rate. However, it is found that the apparent shear strain at which the wavy texture emerges is independent of the apparent shear rate though the value of the apparent shear strain slightly varies with the type of flow cell. Furthermore, the light scattering experiments are carried out to examine the structure of wavy texture. After the startup of the flow, a homogeneous pattern of the light scattering quickly shrink in size and a spike pattern perpendicular to the flow direction is emphasized. While the wavy texture is seen, the ellipsoidal pattern of light scattering oscillates with the same frequency as the passage of the wavy texture. A structure of scattering objects in the wavy texture is proposed, based on the observation of change in the light scattering pattern with time.  相似文献   

10.
 Recently, in order to describe the complex rheological behavior of polymer melts with long side branches like low density polyethylene, new constitutive equations called the pom-pom equations have been derived in the integral/differential form and also in the simplified differential type by McLeish and Larson on the basis of the reptation dynamics with simplified branch structure taken into account. In this study, mathematical stability analysis under short and high frequency wave disturbances has been performed for these constitutive equations. It is proved that the differential model is globally Hadamard stable, as long as the orientation tensor remains positive definite or the smooth strain history in the flow is previously given. However both versions of the model are Hadamard unstable if we neglect the arm withdrawal in the case of maximum backbone stretch. It is also dissipatively unstable, since the steady shear flow curves exhibit non-monotonic dependence on shear rate. Additionally, in the flow regime of creep shear flow where the applied constant shear stress exceeds the maximum achievable value in the steady flow curves, the constitutive equations exhibit severe instability that the solution possesses strong discontinuity at the moment of change of chain dynamics mechanisms. Received: 14 August 2001 Accepted: 18 October 2001  相似文献   

11.
Viscous fingering in surfactant solutions in a rectangular Hele–Shaw cell was investigated. Test fluids were aqueous solutions of cetyltrimethylammonium bromide (CTAB) with sodium salicylate (NaSal) as a counter ion, and the ratio of mole concentration of CTAB and that of NaSal was 1–7.7. Two fluids that had a mole concentration different from that of CTAB were used. Air was injected into the cell and the growth of the interface between air and a CTAB/NaSal solution was observed. The fingertip grew similar to the finger growth in shear-thinning fluids at low pressure gradients. It took a cuspidate shape at the intermediate pressure gradient, and a sudden protrusion at a critical shear rate occurred. In high shear rate regions, the finger behaved as in a less shear-thinning fluid. These phenomena relate to rheological properties of the test fluids. Comparison with flow curves for CTAB/NaSal systems showed that the critical shear rate related to the shear rate at which a bending point appeared in the flow curve.  相似文献   

12.
Samples of cellulose acetate butyrate (CAB) hydroxypropyl cellulose (HPC) and ethyl cellulose (EC) are contrasted with commercial (atactic) polystyrene (PS) and isotactic polypropylene (PP) in studies of (i) differential scanning calorimetry, (ii) quiescent polarized light microscopy (iii) optical retardation variation following an imposed stress field. It is concluced that HPC and EC are thermotropic liquid crystals, while CAB behaves in a manner similar to a vitrifying isotropic melt such as PS. Studies of the shear viscosity and dynamic viscosity indicate HPC and EC exhibit yield values while CAB shows a zero shear viscosity and Vinogradov-Malkin reduced viscosity curve identical to PS. The normal stress and extrudate swell behavior of CAB are also similar to PS. The HPC and EC exhibit substantially reduced extrudate swell. Measurement of the principal normal stress difference behavior of the HPC melt is troubled by the existence of yield values.  相似文献   

13.
The intrinsically coupled effects of the curvature of the flow-field and of the viscoelastic nature of suspending medium on the cross-stream lateral migration of a single non-Brownian sphere in wide-gap Couette flow are studied. Quantitative videomicroscopy experiments using a counterrotating device are compared to the results of 3D finite element simulations. To evaluate the effects of differences in rheological properties of the suspending media, fluids have been selected which highlight specific constitutive features, including a reference Newtonian fluid, a single relaxation time wormlike micellar surfactant solution, a broad spectrum shear-thinning elastic polymer solution and a constant viscosity, highly elastic Boger fluid. As expected for conditions corresponding to Stokes flow, migration is absent in the Newtonian fluid. In the wormlike micellar solution and the shear-thinning polymer solution, spheres are observed to migrate in the direction of decreasing shear rate gradient, i.e. the outer cylinder, except when the sphere is initially released close to the inner cylinder, in which case the migration is towards it. The migration is enhanced by faster relative angular velocities of the cylinders. Shear-thinning reduces the migration velocity, showing an opposite behavior as compared to previous results in planar shear flow. In the Boger fluid, within experimental error no migration could be observed, likely due to the large solvent contribution to the overall viscosity. For small Deborah numbers the migration results are well described by an heuristic argument based on a local stress balance.  相似文献   

14.
Flow instability in three entangled polymer systems including a 10 wt% 1,4-polybutadiene (PBD) solution, an 11.4 wt% polyisobutylene (PIB) solution, and a long chain branched polyethylene melt (LD 146) was investigated in both stress-controlled and rate-controlled experiments in the cone–plate geometry. It was found that flow instability occurred for experiments in both rate- and stress-controlled modes. The effects of cone angle or rim gap and shearing time on flow instability were studied. The smaller cone angle and shorter shearing time delay (in terms of stress or shear rate) the occurrence of severe instability and mass loss of the PBD solution but not for the PIB. Our data are consistent with the dramatic shear rate jump for the flow curve constructed from the stress-controlled experiments being associated with mass loss after the severe instabilities. We also find that the Cox–Merz representation gives a powerful tool for investigation of flow instability. Finally, another interesting result in this work is that it seems that the stress overshoot can be related to the onset of flow instability in the present system.  相似文献   

15.
We investigated the effects of methanol on the two rheological properties, dynamic modulus and flow behaviour, for an aqueous solution of hydrophobically ethoxylated urethane (HEUR). When the added methanol constitutes 0–10 mol% of the sample, the gel relaxation time shortens; when it constitutes 20 mol% of the sample, the distribution of relaxation times broadens. Relaxation of the physical gel formed by a transient network is directly related to the lifetime of the crosslink points, i.e. flower micelles. We speculate that methanol addition shortens the relaxation time by changing the hydrophobic interactions in the flower micelles. The changed hydrophobic interactions then affect not only the relaxation time but also the shape of the HEUR-chain molecular associating structures which in turn affects the mechanical spectrum. Under constant shear flow, shear thickening increases with increasing methanol concentration, and the increase in stress under constant shear flow shows unusual behaviour. A possible contributing factor to this behaviour may be the non-cosolvency of methanol with polyethyleneoxide (PEO). At some critical concentration, methanol in PEO aqueous solution becomes a poor solvent, which then affects the properties of the PEO chains in the transient networks of HEUR aqueous solution. The rheological properties of the transient networks clearly affect the properties of both the crosslink points and the chains. In short, methanol addition induces complicated changes in gel mechanical properties.  相似文献   

16.
Asphalt materials are used in a variety of applications such as road paving, waterproofing, roofing membranes, adhesive binders, rust proofing and water resistant coatings. There are available in a number of grades distinguished in terms of their softening point and flow resistance. The selection of the proper grade of asphalt for a particular application is governed by the desired flow behaviour. A knowledge of the complete flow curve depicting the variation of melt viscosity with shear rate at the relevant temperatures is necessary not only for proper grade selection, but also for specifying processing conditions for aggregate mixing and spraying. The rheological data are also useful in assessing end use performance. The scientific techniques for generating the rheological data involve the use of expensive, sophisticated instruments. Generation of the necessary flow data using these instruments is beyond the financial and technical means of most processors of asphalt materials. The engineering techniques involving the use of inexpensive vacuum viscometers are relatively easy, but provide a single point viscosity measurement at low shear rate. In the present work, a method is proposed for unifying the viscosity versus shear rate a data at various temperatures for a number of asphalt grades. A master curve has been generated that is independent of the grade of asphalt and the temperature of viscosity measurement. The master curve can be used to generate rheograms at desired temperatures for the asphalt grade of interest, knowing its zero-shear viscosity at that temperature.NCL Communication Number 2914.  相似文献   

17.
In this paper, the rheological properties of an extrudable cement-based paste are investigated by means of an original ram extrusion apparatus (capillary rheometer). The experimental results indicate that a careful measurement of the die pressure is necessary to obtain a realistic viscosity vs shear rate curve, as required in extrusion technology. In particular, it is shown that the optimal test configuration is when the pressure measurement is made directly inside the rheometer die. By applying this rheological methodology in steady-state conditions, it has been observed that the extrudable cement-based material here evaluated obeys to a simple power–law equation, in the range of shear rates investigated, which are suitable for an industrial extrusion process. This paper was presented at the third Annual European Rheology Conference (AERC) held in Hersonissos, Crete, Greece, April 24–27, 2006.  相似文献   

18.
不同加载状态下TA2钛合金绝热剪切破坏响应特性   总被引:2,自引:1,他引:1  
一般认为绝热剪切现象在宏观上表现为材料动态本构失稳,即热软化大于应变硬化.本文采用帽型受迫剪切试样研究TA2钛合金的动态力学特性和本构失稳过程.首先对剪切区加载应力状态进行理论和数值分析,通过合理设计帽型试样,剪切区变形可近似按剪切状态处理;结合二维数字图像相关法(two-dimensional digital image correlation,DIC-2D)直接测试试样剪切区应变演化,给出帽型受迫剪切实验的等效应力-应变响应曲线.进一步,利用Hopkinson压杆对TA2钛合金开展动态压缩及帽型剪切对比试验研究,比较压缩、剪切试验得到的等效应力-应变曲线,采用"冻结"试样方法分析试样中绝热剪切局域化演化过程,探讨不同加载状态下TA2钛合金的绝热剪切破坏现象及其动态力学响应特性.实验结果表明,在塑性变形初始阶段,动态压缩及剪切加载下的等效应力-应变曲线符合较好,但随塑性损伤发展及绝热剪切带形成,两者出现分离,表明损伤及绝热剪切演化过程与应力状态相关.剪切试样实验得到的本构"软化"特性能够反映绝热剪切带起始、破坏演化过程的力学响应特性,而在动态压缩实验中,即使试样中已出现双锥形的绝热剪切带及局部裂纹分布,其表观等效应力-应变曲线并不出现软化特征,动态压缩实验无法得到关于绝热剪切起始、发展以及破坏的本构软化响应特性.  相似文献   

19.
Phase separation processes in mixtures of poly-α-methylstyrene-co-acrylonitrile (PαMSAN) and poly-methylmethacrylate (PMMA) with lower critical solution temperature (LCST) behavior have been studied, focusing on the manifestation of the interface in oscillatory shear measurements. By using blends of different composition, systems with a droplet-matrix morphology or a co-continuous structure are generated during the phase separation process. The feasibility of probing this morphology development by rheological measurements has been investigated. The development of a disperse droplet phase leads to an increase in the elasticity of the blend at low frequency, showing up as a shoulder in the plot of storage modulus versus frequency. Here, the droplet growth is unaffected by the shear amplitude up to strains of 0.2; therefore the resulting dynamic data are suitable for quantitative analysis. In contrast, for blends in which phase separation leads to a co-continuous structure, the storage modulus shows a power law behavior at low frequency and its value decreases as time proceeds. For the latter systems, effects of the dynamic measurement on the morphology development have been observed, even for strain amplitudes as low as 0.01. To probe the kinetics of morphology evolution in droplet-matrix systems, measurements of the time dependence of the dynamic moduli at fixed frequency should be performed (for a whole series of frequencies). Only from such measurements, curves of the frequency dependence of the moduli at a well defined residence time can be constructed. From fitting these curves to the emulsion model of Palierne, the droplet diameter distribution at that particular stage in the phase separation and growth process can be obtained. It is not appropriate to use a simplified version of the Palierne model containing only the average droplet size, because a morphology with too broad a size distribution is generated. Received: 15 February 1999 Accepted: 20 May 1999  相似文献   

20.
We solve the time-dependent simple shear flow of a Johnson–Segalman fluid with added Newtonian viscosity. We focus on the case where the steady-state shear stress/shear rate curve is not monotonic. We show that, in addition to the standard smooth linear solution for the velocity, there exists, in a certain range of the velocity of the moving plate, an uncountable infinity of steady-state solutions in which the velocity is piecewise linear, the shear stress is constant and the other stress components are characterized by jump discontinuities. The stability of the steady-state solutions is investigated numerically. In agreement with linear stability analysis, it is shown that steady-state solutions are unstable only if the slope of a linear velocity segment is in the negative-slope regime of the shear stress/shear rate curve. The time-dependent solutions are always bounded and converge to a stable steady state. The number of the discontinuity points and the final value of the shear stress depend on the initial perturbation. No regimes of self-sustained oscillations have been found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号