首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With regard to existing bin packing algorithms, higher packing efficiency often leads to lower packing speed while higher packing speed leads to lower packing efficiency. Packing speed and packing efficiency of existing bin packing algorithms including NFD, NF, FF, FFD, BF and BFD correlates negatively with each other, thus resulting in the failure of existing bin packing algorithms to satisfy the demand of nano-particles filling for both high speed and high efficiency. The paper provides a new bin packing algorithm, Max–min Bin Packing Algorithm (MM), which realizes both high packing speed and high packing efficiency. MM has the same packing speed as NFD (whose packing speed ranks no. 1 among existing bin packing algorithms); in case that the size repetition rate of objects to be packed is over 5, MM can realize almost the same packing efficiency as BFD (whose packing efficiency ranks No. 1 among existing bin packing algorithms), and in case that the size repetition rate of objects to be packed is over 500, MM can achieve exactly the same packing efficiency as BFD. With respect to application of nano-particles filling, the size repetition rate of nano particles to be packed is usually in thousands or ten thousands, far higher than 5 or 500. Consequently, in application of nano-particles filling, the packing efficiency of MM is exactly equal to that of BFD. Thus the irreconcilable conflict between packing speed and packing efficiency is successfully removed by MM, which leads to MM having better packing effect than any existing bin packing algorithm. In practice, there are few cases when the size repetition of objects to be packed is lower than 5. Therefore the MM is not necessarily limited to nano-particles filling, and can also be widely used in other applications besides nano-particles filling. Especially, MM has significant value in application of nano-particles filling such as nano printing and nano tooth filling.  相似文献   

2.
This article introduces a new method of supervised learning based on linear discrimination among the vertices of a regular simplex in Euclidean space. Each vertex represents a different category. Discrimination is phrased as a regression problem involving ?-insensitive residuals and a quadratic penalty on the coefficients of the linear predictors. The objective function can by minimized by a primal MM (majorization–minimization) algorithm that (a) relies on quadratic majorization and iteratively re-weighted least squares, (b) is simpler to program than algorithms that pass to the dual of the original optimization problem, and (c) can be accelerated by step doubling. Limited comparisons on real and simulated data suggest that the MM algorithm is competitive in statistical accuracy and computational speed with the best currently available algorithms for discriminant analysis.  相似文献   

3.
MM Algorithms for Some Discrete Multivariate Distributions   总被引:1,自引:0,他引:1  
The MM (minorization–maximization) principle is a versatile tool for constructing optimization algorithms. Every EM algorithm is an MM algorithm but not vice versa. This article derives MM algorithms for maximum likelihood estimation with discrete multivariate distributions such as the Dirichlet-multinomial and Connor–Mosimann distributions, the Neerchal–Morel distribution, the negative-multinomial distribution, certain distributions on partitions, and zero-truncated and zero-inflated distributions. These MM algorithms increase the likelihood at each iteration and reliably converge to the maximum from well-chosen initial values. Because they involve no matrix inversion, the algorithms are especially pertinent to high-dimensional problems. To illustrate the performance of the MM algorithms, we compare them to Newton’s method on data used to classify handwritten digits.  相似文献   

4.
Algorithms with Adaptive Smoothing for Finite Minimax Problems   总被引:2,自引:0,他引:2  
We present a new feedback precision-adjustment rule for use with a smoothing technique and standard unconstrained minimization algorithms in the solution of finite minimax problems. Initially, the feedback rule keeps a precision parameter low, but allows it to grow as the number of iterations of the resulting algorithm goes to infinity. Consequently, the ill-conditioning usually associated with large precision parameters is considerably reduced, resulting in more efficient solution of finite minimax problems.The resulting algorithms are very simple to implement, and therefore are particularly suitable for use in situations where one cannot justify the investment of time needed to retrieve a specialized minimax code, install it on one's platform, learn how to use it, and convert data from other formats. Our numerical tests show that the algorithms are robust and quite effective, and that their performance is comparable to or better than that of other algorithms available in the Matlab environment.  相似文献   

5.
The Bradley–Terry model is a popular approach to describe probabilities of the possible outcomes when elements of a set are repeatedly compared with one another in pairs. It has found many applications including animal behavior, chess ranking, and multiclass classification. Numerous extensions of the basic model have also been proposed in the literature including models with ties, multiple comparisons, group comparisons, and random graphs. From a computational point of view, Hunter has proposed efficient iterative minorization-maximization (MM) algorithms to perform maximum likelihood estimation for these generalized Bradley–Terry models whereas Bayesian inference is typically performed using Markov chain Monte Carlo algorithms based on tailored Metropolis–Hastings proposals. We show here that these MM algorithms can be reinterpreted as special instances of expectation-maximization algorithms associated with suitable sets of latent variables and propose some original extensions. These latent variables allow us to derive simple Gibbs samplers for Bayesian inference. We demonstrate experimentally the efficiency of these algorithms on a variety of applications.  相似文献   

6.
This paper studies two-machine flowshop scheduling with batching and release time, whose objective is to minimize the makespan. We formulate the scheduling problem as a mixed integer programming model and show that it is a strongly NP-hard problem. We derive a lower bound and develop dynamic programming-based heuristic algorithms to solve the scheduling problem. Computational experiments are carried out to evaluate the performance of the heuristic algorithms. The numerical results show that some of the heuristic algorithms can indeed find effective solutions for the scheduling problem.  相似文献   

7.
We propose a novel generalization of the Canonical Difference of Convex problem (CDC), and we study the convergence of outer approximation algorithms for its solution, which use an approximated oracle for checking the global optimality conditions. Although the approximated optimality conditions are similar to those of CDC, this new class of problems is shown to significantly differ from its special case. Indeed, outer approximation approaches for CDC need be substantially modified in order to cope with the more general problem, bringing to new algorithms. We develop a hierarchy of conditions that guarantee global convergence, and we build three different cutting plane algorithms relying on them.  相似文献   

8.
The multiconstraint 0–1 knapsack problem is encountered when one has to decide how to use a knapsack with multiple resource constraints. Even though the single constraint version of this problem has received a lot of attention, the multiconstraint knapsack problem has been seldom addressed. This paper deals with developing an effective solution procedure for the multiconstraint knapsack problem. Various relaxation of the problem are suggested and theoretical relations between these relaxations are pointed out. Detailed computational experiments are carried out to compare bounds produced by these relaxations. New algorithms for obtaining surrogate bounds are developed and tested. Rules for reducing problem size are suggested and shown to be effective through computational tests. Different separation, branching and bounding rules are compared using an experimental branch and bound code. An efficient branch and bound procedure is developed, tested and compared with two previously developed optimal algorithms. Solution times with the new procedure are found to be considerably lower. This procedure can also be used as a heuristic for large problems by early termination of the search tree. This scheme was tested and found to be very effective.  相似文献   

9.
This paper derives new algorithms for signomial programming, a generalization of geometric programming. The algorithms are based on a generic principle for optimization called the MM algorithm. In this setting, one can apply the geometric-arithmetic mean inequality and a supporting hyperplane inequality to create a surrogate function with parameters separated. Thus, unconstrained signomial programming reduces to a sequence of one-dimensional minimization problems. Simple examples demonstrate that the MM algorithm derived can converge to a boundary point or to one point of a continuum of minimum points. Conditions under which the minimum point is unique or occurs in the interior of parameter space are proved for geometric programming. Convergence to an interior point occurs at a linear rate. Finally, the MM framework easily accommodates equality and inequality constraints of signomial type. For the most important special case, constrained quadratic programming, the MM algorithm involves very simple updates.  相似文献   

10.
In this paper, we propose a generalized penalization technique and a convex constraint minimization approach for the $p$-harmonic flow problem following the ideas in [Kang & March, IEEE T. Image Process., 16 (2007), 2251-2261]. We use fast algorithms to solve the subproblems, such as the dual projection methods, primal-dual methods and augmented Lagrangian methods. With a special penalization term, some special algorithms are presented. Numerical experiments are given to demonstrate the performance of the proposed methods. We successfully show that our algorithms are effective and efficient due to two reasons: the solver for subproblem is fast in essence and there is no need to solve the subproblem accurately (even 2 inner iterations of the subproblem are enough). It is also observed that better PSNR values are produced using the new algorithms.  相似文献   

11.
We are given a set of objects, each characterized by a weight and a fragility, and a large number of uncapacitated bins. Our aim is to find the minimum number of bins needed to pack all objects, in such a way that in each bin the sum of the object weights is less than or equal to the smallest fragility of an object in the bin. The problem is known in the literature as the Bin Packing Problem with Fragile Objects, and appears in the telecommunication field, when one has to assign cellular calls to available channels by ensuring that the total noise in a channel does not exceed the noise acceptance limit of a call.We propose a branch-and-bound and several branch-and-price algorithms for the exact solution of the problem, and improve their performance by the use of lower bounds and tailored optimization techniques. In addition we also develop algorithms for the optimal solution of the related knapsack problem with fragile objects. We conduct an extensive computational evaluation on the benchmark set of instances, and show that the proposed algorithms perform very well.  相似文献   

12.
In this paper we consider some generalizations of the vertex coloring problem, where distance constraints are imposed between adjacent vertices (bandwidth coloring problem) and each vertex has to be colored with more than one color (bandwidth multicoloring problem). We propose an evolutionary metaheuristic approach for the first problem, combining an effective tabu search algorithm with population management procedures. The approach can be applied to the second problem as well, after a simple transformation. Computational results on instances from the literature show that the overall algorithm is able to produce high quality solutions in a reasonable amount of time, outperforming the most effective algorithms proposed for the bandwidth coloring problem, and improving the best known solution of many instances of the bandwidth multicoloring problem.  相似文献   

13.
Neighbourhood search algorithms are often the most effective known approaches for solving partitioning problems. In this paper, we consider the capacitated examination timetabling problem as a partitioning problem and present an examination timetabling methodology that is based upon the large neighbourhood search algorithm that was originally developed by Ahuja and Orlin. It is based on searching a very large neighbourhood of solutions using graph theoretical algorithms implemented on a so-called improvement graph. In this paper, we present a tabu-based large neighbourhood search, in which the improvement moves are kept in a tabu list for a certain number of iterations. We have drawn upon Ahuja–Orlin's methodology incorporated with tabu lists and have developed an effective examination timetabling solution scheme which we evaluated on capacitated problem benchmark data sets from the literature. The capacitated problem includes the consideration of room capacities and, as such, represents an issue that is of particular importance in real-world situations. We compare our approach against other methodologies that have appeared in the literature over recent years. Our computational experiments indicate that the approach we describe produces the best known results on a number of these benchmark problems.  相似文献   

14.
We further study averaged and firmly nonexpansive mappings in the setting of geodesic spaces with a main focus on the asymptotic behavior of their Picard iterates. We use methods of proof mining to obtain an explicit quantitative version of a generalization to geodesic spaces of a result on the asymptotic behavior of Picard iterates for firmly nonexpansive mappings proved by Reich and Shafrir. From this result we obtain effective uniform bounds on the asymptotic regularity for firmly nonexpansive mappings. Besides this, we derive effective rates of asymptotic regularity for sequences generated by two algorithms used in the study of the convex feasibility problem in a nonlinear setting.  相似文献   

15.
The present work addresses the problem of model estimation and computations for discrete data when some covariates are modeled smoothly using splines. We propose to introduce and explicitly estimate individual deviance effects (one for each observation), constrained by a ridge penalty. This turns out to be an effective way to absorb model excess variation and detect systematic patterns. Large but very sparse systems of penalized likelihood equations have to be solved. We present fast and compact algorithms for fitting, estimation and computation of the effective dimension. Applications to counts, binomial, and survival data illustrate practical use of this model.  相似文献   

16.
In this work, we consider a complex flowshop scheduling problem in which both no-wait and separate setup times are considered. The optimisation criterion is the minimisation of the total completion time. We propose an effective dominance rule for the four machine case that can also be used for m machines. Five simple and fast heuristics are proposed along with two easy to code stochastic local search methods, one of them being based on Iterated Local Search (ILS). An extensive computational evaluation is carried out with two sets of 5,400 instances. All seven methods are compared to two recent algorithms. The results, confirmed by thorough statistical analyses, show that the proposed methods are more effective and efficient when compared to the best existing algorithms in the literature for the considered problem.  相似文献   

17.
One of the critical issues in the effective use of surrogate relaxation for an integer programming problem is how to solve the surrogate dual within a reasonable amount of computational time. In this paper, we present an exact and efficient algorithm for solving the surrogate dual of an integer programming problem. Our algorithm follows the approach which Sarin et al. (Ref. 8) introduced in their surrogate dual multiplier search algorithms. The algorithms of Sarin et al. adopt an ad-hoc stopping rule in solving subproblems and cannot guarantee the optimality of the solutions obtained. Our work shows that this heuristic nature can actually be eliminated. Convergence proof for our algorithm is provided. Computational results show the practical applicability of our algorithm.  相似文献   

18.
Motivated by the problem of learning a linear regression model whose parameter is a large fixed-rank non-symmetric matrix, we consider the optimization of a smooth cost function defined on the set of fixed-rank matrices. We adopt the geometric framework of optimization on Riemannian quotient manifolds. We study the underlying geometries of several well-known fixed-rank matrix factorizations and then exploit the Riemannian quotient geometry of the search space in the design of a class of gradient descent and trust-region algorithms. The proposed algorithms generalize our previous results on fixed-rank symmetric positive semidefinite matrices, apply to a broad range of applications, scale to high-dimensional problems, and confer a geometric basis to recent contributions on the learning of fixed-rank non-symmetric matrices. We make connections with existing algorithms in the context of low-rank matrix completion and discuss the usefulness of the proposed framework. Numerical experiments suggest that the proposed algorithms compete with state-of-the-art algorithms and that manifold optimization offers an effective and versatile framework for the design of machine learning algorithms that learn a fixed-rank matrix.  相似文献   

19.
Using a simple multiprocessor scheduling problem as a vehicle, we explore the behavior of tabu search algorithms using different tabu, local search and list management strategies. We found that random blocking of the tail of the tabu list always improved performance; but that the use of frequency-based penalties to discourage frequently selected moves did not. Hash coding without conflict resolution was an effective way to represent solutions on the tabu list. We also found that the most effective length of the tabu list depended on features of the algorithm being used, but not on the size and complexity of the problem being solved. The best combination of features included random blocking of the tabu list, tasks as tabus and a greedy local search. An algorithm using these features was found to outperform a recently published algorithm solving a similar problem.  相似文献   

20.
《Optimization》2012,61(10):1661-1686
ABSTRACT

Optimization over the efficient set of a multi-objective optimization problem is a mathematical model for the problem of selecting a most preferred solution that arises in multiple criteria decision-making to account for trade-offs between objectives within the set of efficient solutions. In this paper, we consider a particular case of this problem, namely that of optimizing a linear function over the image of the efficient set in objective space of a convex multi-objective optimization problem. We present both primal and dual algorithms for this task. The algorithms are based on recent algorithms for solving convex multi-objective optimization problems in objective space with suitable modifications to exploit specific properties of the problem of optimization over the efficient set. We first present the algorithms for the case that the underlying problem is a multi-objective linear programme. We then extend them to be able to solve problems with an underlying convex multi-objective optimization problem. We compare the new algorithms with several state of the art algorithms from the literature on a set of randomly generated instances to demonstrate that they are considerably faster than the competitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号