首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new polyvinyl chloride (PVC) membrane electrode that is highly selective to Hg(II) ions was prepared by using bis[5-((4-nitrophenyl)azo salicylaldehyde)] (BNAS) as a suitable neutral carrier. The sensor exhibits a Nernstian response for mercury ions over a wide concentration range (5.0×10−2-7.0×10−7 M) with a slope of 30±1 mV per decade. It has a response time of <10 s and can be used for at least 3 months without any measurable divergence in potential. The electrode can be used in the pH range from 1.0 to 3.5. The proposed sensor shows fairly good discriminating ability towards Hg2+ ion in comparison with some hard and soft metals. The electrode was used in the direct determination of Hg2+ in aqueous solution and as an indicator electrode in potentiometric titration of mercury ions.  相似文献   

2.
Mercury (II) ion-selective PVC membrane sensor based on ethyl-2-benzoyl-2-phenylcarbamoyl acetate (EBPCA) as a novel nitrogen containing sensing material is successfully developed. The sensor exhibits good linear response of 30 mV per decade within the concentration range 10(-6)-10(-3) mol l(-1) Hg(II). The sensor shows good selectivity for mercury (II) ion in comparison with alkali, alkaline earth, transition and heavy metal ions. The EBPCA-based sensor is suitable for use with aqueous solutions of pH 2.0-4.5 and exhibits minimal interference by Ag(I) and Fe(III), which are known to interfere with other previously suggested sensors. The nature and composition of the sensing material and its mercury complex are examined using Fourier-transform infrared analysis, elemental analysis and X-ray fluorescence techniques. The proposed sensor is applied as a sensor for the determination of Hg(II) content in some amalgam alloys. The results show good correlation with data obtained by atomic absorption spectrometric method.  相似文献   

3.
A sulfate ion-selective PVC membrane sensor based on 4-(4-bromophenyl)-2,6-diphenylpyrilium perchlorate (BDPP) as a novel sensing material is successfully developed. The electrode shows a good selectivity for sulfate ion with respect to common organic and inorganic anions. The sensor exhibits a good linear response with slope of -28.9+/-0.5 mV per decade over the concentration range of 1.0x10(-6)-1.0x10(-2) M, and a detection limit of 8.0x10(-7) M of SO(4)(2-) ions. The electrode response is independent of pH in the range of 4.0-9.0. The proposed sensor was applied as an indicator electrode in potentiometric titration of sulfate and barium ions, and to the determination of zinc in zinc sulfate tablets.  相似文献   

4.
An ultrasensitive platform is presented for the determination of hydrazine by combining the high specific surface area and higher electrical conductivity of poly(sodium styrenesulfonate) (PSS) graphene nanocomposite film with amperometric detection. The PSS-graphene were synthesized by the Hummers method and used to modify a glassy carbon electrode. The material was characterized by scanning electron microscopy and is found to be suitable for sensing hydrazine. The overpotential of hydrazine on the modified electrode is 0.31 V which is lower than in many electrochemical sensors. The calibration curve for hydrazine is linear in the range from 3.0 to 300 µmol L?1, and the detection limit is as low as 1 µmol L?1. This is the first report in which such a high sensitivity and low limit of detection has been achieved. It is concluded that PSS graphene represents an efficient electron mediator for sensing hydrazine.  相似文献   

5.
The electrochemical gate based on a chemical signal-responsive membrane was assembled on a Au electrode surface. The polyelectrolyte gel membrane was capable to bind cholesterol because of the hydrogen bonding between cholesterol and the polymer backbone resulting in the gel swelling. The membrane channels were reversibly closed and opened upon addition and washing out cholesterol, respectively. Thus, the electrochemical process of a soluble redox probe, [Fe(CN)(6)](3-/4-), at the membrane-modified electrode was reversibly switched "on-off" by the cyclic addition and washing out cholesterol. The electrochemical reaction was also tuned by the variation of the concentration of the added cholesterol that controlled the extent of the channels closing. The switchable and tuneable operation of the chemically controlled electrochemical gate was characterized by Faradaic impedance spectroscopy and atomic force microscopy, indicating that the extent of the pores opening and closing is controlled by the concentration of the membrane-associated cholesterol. The chemical-responsive electrochemical gate was suggested to be a part of future biochemical/electrochemical systems with logic operations.  相似文献   

6.
This paper focuses on the quantitative determination of the loss of the components from plastic membranes of ion-selective electrodes (ISEs) during contact with aqueous bathing solutions. The leaching processes, which affect the ISE responses, are rarely characterized by independent methods. For this purpose, differential pulse cathodic stripping voltammetry (DP CSV) is used. This method, owing to its high sensitivity, acceptable recovery and accuracy, is a good tool to characterize the kinetics of leakage of the lipophilic salts. Sodium tetraphenylborate (NaTPB) leakage from the PVC-based sodium-selective membrane containing two different plasticizers, o-nitrophenyl octyl ether (o-NPOE) or di(2-ethylhexyl) sebacate (DOS) is presented. Correlation between the rate of leaching of the lipophilic salt and dielectric constants of the plasticizers is observed. The data obtained by DP CSV correlate well with potentiometric and electrochemical impedance responses. The observed outflow of TPB is associated with decreasing potentiometric sensitivity to sodium and increasing bulk membrane resistance.  相似文献   

7.
Nitrate-doped polypyrrole (PPy) films on a glassy carbon substrate have been prepared electrochemically in aqueous, acetonitrile, and propylene carbonate solutions for use as nitrate sensors. Lithium nitrate, sodium nitrate, nitric acid, tetraethylammonium p-toluene sulfonate (TS), and tetradodecylammonium nitrate (TDN) were employed as electrolytes. The effect of dibutylphthalate (DBP) as a plasticizer on the sensitivity and lifetime of PPy film sensors was also investigated. A Nernstian behavior with a slope of 56.9 m V/decade over 0.1–7.4 × 10−5 M NO and a detection limit of 4.7 × 10−5 M were observed for the polymer sensor prepared in acetonitrile solution containing lithium nitrate and 15% plasticizer (DBP). A lifetime of more than 6 months for this PPy film electrode was obtained.  相似文献   

8.
Yao S  Li W  Su X  Zuo X  Wei W 《Talanta》1999,50(3):469-480
A selective, sensitive and simple ion-selective piezoelectric (ISP) sensor was developed for the direct determination of isoniazid (INH) in body fluids. Based on sensitive mass response of piezoelectric quartz crystal and selective adsorption/desorption across the modified film, the ISP sensor was fabricated by coating a PVC film containing activant on one electrode of a thickness-shear mode piezoelectric quartz crystal. The observed frequencies of ISP sensor were found to decrease with the increase of the INH concentration in a 0.1 M NaNO(3) solution. In this paper, three activants, INH-phosphotungstate (I), INH-silicotungstate (II), and INH-[BiI(4)](-) (III), were synthesized and investigated. Calibration graphs were linear from 6x10(-8) to 2x10(-3) M for I, 2x10(-7) to 2x10(-3) M for II and 2x10(-7) to 2x10(-3) M for III, with detection limits 6x10(-8) M for I, 2x10(-7) M for II and 2x10(-7) M for III, in a 0.1 M NaNO(3) solution at pH 7.0 and 37 degrees C. Recoveries were from 98% to 102% with R.S.D. up to 2%. Results for real samples obtained by the proposed method agreed well with those obtained by the conventional pharmacopeia method.  相似文献   

9.
《Supramolecular Science》1997,4(3-4):427-435
The response of an NO2 sensing system based on LB films of a polysiloxane with azobenzene chromophoric side-chains has been investigated. Changes in absorbance on exposure to 100 ppm NO2 have been recorded using UV-visible absorption spectroscopy from which changes in extinction coefficient (Δ k ≈ 0.033 at 500 nm) have been determined. Shallow angle X-ray reflectivity (SAXR) studies indicate a change in layer thickness from 2.10nm in air to 2.31 nm in 10000 ppm NO2 together with loss of Bragg detail. Changes in real refractive index (Δn ≈ 0.107 over most of the visible region) for films in air and 100 ppm NO2 have been deduced from reflectance spectra.  相似文献   

10.
Summary A new hydrogen ion-selective based on an iron hydroxo complex was proposed. The ion sensing membrane was composed of the iron(III) hydroxo complex, membrane solvent and polyvinyl chloride. The proposed electrode using 1-decanol as the most favourable solvent showed a linear pH-response from 0 to 5 with a potential change of 56 mV per pH-unit. The characteristics of the proposed electrode and a discussion on the response mechanism are reported.
Wasserstoffionen-selektive Elektrode auf Basis eines Eisen-Hydroxo-Komplexes
Zusammenfassung Die Membran der vorgeschlagenen ionen-selektiven Elektrode besteht aus einem Eisen(III)-hydroxokomplex, dem Membran-Lösungsmittel und Polyvinylchlorid. Mit 1-Decanol als günstigstem Lösungsmittel ergab sich eine lineare Anzeige von pH 0 bis 5 mit einer Potentialänderung von 56 mV/pH. Die Charakteristik der vorgeschlagenen Elektrode wird beschrieben und der Ansprechmechanismus diskutiert.
  相似文献   

11.
The detection of electric field by monitoring the optical whispering gallery mode shifts of polymeric microspheres is demonstrated. Two types of spheres are considered; (i) a polydimethylsiloxane (PDMS) sphere with 60 parts base silicon elastomer-to-1 part polymer curing agent by volume and; (ii) a silica sphere coated with a PDMS (uncured) base. The optical mode shifts are caused by perturbations to the resonator morphology induced by electrostriction effect in the presence of an external electric field. Preliminary experiments show that the latter microsphere yields higher sensitivity (0.027 pm/V m−1) with a measurement precision of ∼1.8 V/m. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 276–279  相似文献   

12.
13.
The construction of a new type of enzyme electrode for the potentiometric determination of glucose is reported. The electrode response is based on the enzymecatalyzed reactions: The highly selective iodide sensor monitors the local decrease in the iodide activity at the electrode surface. The properties of the above reactions were examined kinetically, with flow-stream techniques and potentiometric detection. The glucose electrode constructed and the use of flow-stream experiments with two iodide sensors provided accurate and convenient glucose determinations in the absence of some oxidizing and reducing agents.  相似文献   

14.
A polymeric membrane permanganate-selective electrode has been developed as a current-controlled reagent release system for potentiometric detection of reductants in flow injection analysis. By applying an external current, diffusion of permanganate ions across the polymeric membrane can be controlled precisely. The permanganate ions released at the sample-membrane interface from the inner filling solution of the electrode are consumed by reaction with a reductant in the sample solution thus changing the measured membrane potential, by which the reductant can be sensed potentiometrically. Ascorbate, dopamine and norepinephrine have been employed as the model reductants. Under the optimized conditions, the potential peak heights are proportional to the reductant concentrations in the ranges of 1.0×10(-5) to 2.5×10(-7)M for ascorbate, of 1.0×10(-5) to 5.0×10(-7)M for dopamine, and of 1.0×10(-5) to 5.0×10(-7)M for norepinephrine, respectively with the corresponding detection limits of 7.8×10(-8), 1.0×10(-7) and 1.0×10(-7)M. The proposed system has been successfully applied to the determination of reductants in pharmaceutical preparations and vegetables, and the results agree well with those of iodimetric analysis.  相似文献   

15.
The potassium-selective PVC membrane electrodes based on naphtho-15-crown-5 have rapid, stable and Nernstian response in the range 10-1–10-5 M. The selectivity coefficient for potassium over sodium is 4 × 10-4.  相似文献   

16.
A sodium ion-selective PVC membrane electrode based on di(o-methoxy)stilbenzo-24-crown-8 is reported. The electrode gives a near-Nernstian response in the range 9×10?6–1×10?2 M sodium ion and can be used in the pH range 5–8.5. Selectivity coefficients are 1.8×10?1 (K+), 2.0×10?4 (Li+) 2.5×10?2 (NH+4) and about 10?4 for Mg2+, Ca2+ and Ba2+.  相似文献   

17.
Cho DH  Chung KC  Park MY 《Talanta》1998,47(4):815-821
New synthetic hydrogen ion-selective carriers, derivatives of dibenzylamine, have been used as neutral carriers in liquid membrane electrodes to measure pH range from 2 to 10. A H(+)-selective membrane electrode based on octyldibenzylamine gave a better linear response to pH than other alkyldibenzylamines as neutral carriers. It gave a linear response over the pH range 2-10 and a slope of 56.5 mV/pH at 20 degrees C. The electrode had fairly low electrical resistance, good potential stability and reproducibility. The selectivity coefficients towards sodium, potassium and calcium ions as well as other characteristics of the membrane electrode have been studied.  相似文献   

18.
Kim DW  Park KW  Yang MH  Kim TH  Mahajan RK  Kim JS 《Talanta》2007,74(2):223-228
The new ion-selective electrodes (ISEs) based on salphenH2 derivatives such as N,N′-(propylenedioxy)benzenebis(salicylideneimine) L1 and N,N′-4,5-(propylenedioxy)benzenebis(3,5-di-tert-butylsalicylideneimine) L2 as cation carriers are developed for a uranyl ion. The combination of these new ionophores with tris(2-ethylhexyl)phosphate (TEHP) as a plasticizer particularly shows near Nernstian slope in the wide concentration range (1.0 × 10−6 to 1.0 × 10−2 M) of UO22+ and is observed well in the pH range from 1.0 to 5.0 with a response time less than 20 s. Since the employed ionophores were confirmed to form well-defined stable 1:1 complexes with UO22+, the observed high selectivity for a uranyl ion over the other cations was attributed to the selective complexation as well as the lipophilic behavior of these ligands especially for L2. The proposed electrodes offered practically low detection limit of 6.5 × 10−7 M and reasonably good end-points within experimental error were obtained when the sensor was used as an indicator electrode for the potentiometric titration.  相似文献   

19.
The pH response of a pH-sensitive field-effect transistor (FET) is not affected by a ca. 1-μm thick membrane formed from λ-aminopropyltriethoxysilane and glutaraldehyde over the gate insular by a vapor deposition method. The response between pH 5.5 and 8.5 is ca. 61 mV pH?1 at 37°C in 5 mM Tris-HCl buffer. When urease is immobilized on the membrane, the sensor gives a linear relationship between the initial rate of the output gate voltage change and the logarithmic value of urea concentration between 16.7 and 167 mM. Determination of urea is possible within 30 s. The optimum pH is 6.0–6.5, at 37°C. The system can be used for 20 days with only slight loss of enzymatic activity.  相似文献   

20.
A neutral electrochemical chemosensor based on TTF exhibited high selectivity for H2PO4- over a wide range of anions and the significant C-H...O hydrogen bonding between C=C-H of the TTF unit and H2PO4- played an important role in regulating the selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号