首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gold content of placer gold flakes and gold bearing ores has been determined by instrumental neutron activation analysis /INAA/ and radiochemical neutron activation analysis /RNAA/. It was discovered that significant errors result in the instrumental method for gold flakes as small as 10 mg due to sample self-absorption of neutrons during irradiation. Reliable results were obtained, for both ore samples and gold flakes, by dissolving the samples in aqua regia prior to irradiation.  相似文献   

2.
Supported gold catalysts have drawn worldwide interest due to the novel properties and potential applications in industries. However, the origin of the catalytic activity in gold nanoparticles is still not well understood. In this study, time-of-flight secondary ion mass spectroscopy (TOF-SIMS) has been applied to investigate the nature of gold in Au (1.3 wt %)/gamma-Al2O3 and Au (2.8 wt %)/TiO2 catalysts prepared by the deposition-precipitation method. The SIMS spectrum of the supported gold catalysts presented AuO-, AuO2-, and AuOH- ion clusters. These measurements show direct evidence for oxidized gold on supported gold catalysts and may be helpful to gaining better understanding of the origin of the catalytic activity.  相似文献   

3.
Gold colloid possessing both lipase and PEG-tethered chains on the surface was prepared by the adsorption of lipase, followed by the immobilization of the PEG/polycation block copolymer on the colloid surface. The obtained colloid showed high dispersion stability up to 0.3 M NaCl concentration. The enzymatic activity of the lipase on the colloid complex was equivalent to the native enzyme. Surprisingly, more than 95% of the initial enzymatic activity was retained after repeated thermal treatments (five times) at 58 °C for 10 min. The PEG condensed layer between the immobilized enzyme on the gold colloid may prevent the denaturation of the enzyme at high temperature. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

4.
We report a high-yield synthetic method for a new type of metal nanostructure, spiky gold nanoshells, which combine the morphological characteristics of hollow metal nanoshells and nanorods. Our method utilizes block copolymer assemblies and polymer beads as templates for the growth of spiky nanoshells. Various shapes of spiky metal nanoshells were prepared in addition to spherical nanoshells by using block copolymer assemblies such as rod-like micelles, vesicles, and bilayers as templates. Furthermore, spiky gold shells encapsulating magnetic nanoparticles or quantum dots were prepared based on the ability of block copolymers to self-assemble with various types of nanoparticles and molecules. The capability to encapsulate other materials in the core, the shape tunability, and the highly structured surface of spiky nanoshells should benefit a range of imaging, sensing, and medical applications of metal nanostructures.  相似文献   

5.
There are many examples of catalysis in solution by cationic complexes of gold, and recent results, reviewed here in this critical review, demonstrate that cationic gold species on oxide and zeolite supports are also catalytically active, for reactions including ethylene hydrogenation and CO oxidation. The catalytically active gold species on supports are evidently not restricted to isolated mononuclear gold complexes, but include gold clusters, which for at least some reactions are more active than the mononuclear complexes and for some reactions less active. Fundamental questions remain about the nature of cationic gold in supported catalysts, such as the nature of the cationic gold clusters and the nature of gold atoms at metal-support interfaces (88 references).  相似文献   

6.
Monolayer protected gold nanoparticles (AuNPs) modified with a 3-aryl-3-(trifluoromethyl)diazirine functionality at its terminus (Diaz-AuNPs, 3.9 nm) were prepared and irradiated in the presence of two very different substrates, reduced graphene and glass. Upon irradiation, the terminal diazirine group loses nitrogen to generate a reactive carbene at the interface of the AuNPs that can then undergo addition or insertion reactions with functional groups on the graphene or glass surfaces, leading to the formation of graphene-AuNP and glass-AuNP hybrids, respectively. The AuNP hybrids were characterized using TEM, XRD, XPS, AFM, and UV-vis spectroscopy. Control experiments done in the absence of irradiation demonstrate that carbene activation is required for incorporation of significant AuNP onto the materials. The AuNP hybrids are robust and stable to excessive washing and centrifugation supporting the covalent nature of the interaction between the AuNP and the graphene or silicate glass substrates. Because the formation of the composite is light activated, it lends itself to photopatterning; this application is demonstrated for making the glass-AuNP composites.  相似文献   

7.
Ciprofloxacin-protected gold nanoparticles   总被引:3,自引:0,他引:3  
The antibacterial drug ciprofloxacin (cfH) has been used to protect gold nanoparticles of two different mean diameters, 4 and 20 nm. The protection is complete with about 65 and 585 cfH molecules covering 4 and 15 nm particles, respectively. The nature of binding has been investigated by several analytical techniques. The nitrogen atom of the NH moiety of piperazine group binds on the gold surface, as revealed by voltammetric and spectroscopic studies. The cfH-adsorbed particles are stable in the dry state as well as at room temperature, and as a result, redispersion is possible. The rate of release of the drug molecule from the nanoparticles is more in the basic medium than in pure water, and the kinetics depend on the size of the particle; faster desorption is seen in smaller particles. The bound cfH is fluorescent, and this property could be used in biological investigations. This study shows that metal nanoparticles could be useful carriers for cfH and fluoroquinolone molecules. Most of the bound molecules could be released over an extended period of time.  相似文献   

8.
The adsorption of hydroxyethylcellulose (HEC), ethyl(hydroxyethyl)cellulose (EHEC), and their hydrophobically modified counterparts HM-HEC and HM-EHEC has been studied on planar gold and citrate-covered gold surfaces by means of quartz crystal microbalance with dissipation monitoring (QCM-D), and on citrate-covered gold particles with the aid of dynamic light scattering (DLS). The QCM-D results indicate that larger amounts of polymer are adsorbed from aqueous solutions of HM-HEC and HM-EHEC on both substrates than from solutions of their unmodified analogues. The adsorption affinity for all the polymers, except EHEC, is higher on the citrate-covered surfaces than on the bare gold substrate. This indicates that more adsorption sites are activated in the presence of the citrate layer. The experimental adsorption data for all the polymers can be described fairly well by the Langmuir adsorption isotherm. However, at very low polymer concentrations significant deviations from the model are observed. The value of the hydrodynamic thickness of the adsorbed polymer layer (delta h), determined from DLS, rises with increasing polymer concentration for all the cellulose derivatives; a Langmuir type of isotherm can be used to roughly describe the adsorption behavior. Because of good solvent conditions for HEC the chains extend far out in the bulk at higher concentrations and the value of delta h is much higher than that of HM-HEC. The adsorption of EHEC and HM-EHEC onto gold particles discloses that the values of delta h are considerably higher for the hydrophobically modified cellulose derivative, and this finding is compatible with the trend in layer thickness estimated from the QCM-D measurements.  相似文献   

9.
The paper describes a convenient, rapid, and reproducible method for the synthesis of stable dispersions of uniform gold nanoparticles at ambient temperatures by mixing aqueous solutions of tetrachloroauric acid and iso-ascorbic acid. The influence of the experimental conditions on the size of the gold particles and the stability of the final sols was monitored by dynamic light scattering and UV-vis spectrophotometry. It was found that the size of the resulting nanoparticles is affected by the concentration and the pH of gold solution, while the stability of the electrostatically stabilized final sols is strongly dependent on the excess of reductant in the system, the ionic strength, and the temperature of the precipitation. Since the preparation process does not require the addition of a dispersing agent, the surface of the resulting gold nanoparticles can be easily functionalized to make them suitable for applications in medicine, biology, and catalysis.  相似文献   

10.
The article reviews the most important developments in the synthesis of heterocycles by gold catalysts for reactions directly involving the heteroatoms in the reacting groups. Reactions without direct participation of the hetero atoms, for example in substrates with the heteroatom in a tether between the reacting groups, are not included. In the last decade homogeneous gold catalysis has emerged from a handful of scattered publications to a hot topic, an area with now hundreds of publications per year. Among the many different products accessible by the new methods developed, heterocycles are probably the most important class of compounds with significant impact on the synthesis of agrochemicals and pharmaceuticals.  相似文献   

11.
Gold nanoparticles (Au NPs) have been synthesized using simple thermolysis, whether from the mesophase or from toluene solutions, of mesogenic alkynyl-isocyanide gold complexes [Au(C≡C-C(6)H(4)-C(m)H(2m+1))(C≡N-C(6)H(4)-O-C(n)H(2n+1))]. The thermal decomposition from the mesophase is much slower than from solution and produces a more heterogeneous size distribution of the nanoparticles. Working in toluene solution, the size of nanoparticles can be modulated from ~2 to ~20 nm by tuning the chain lengths of the ligands present in the precursor. Different experimental conditions have been analyzed to reveal the processes governing the formation of the gold nanoparticles. Experiments on the effect of adding ligands or bubbling oxygen support that the thermal decomposition is a bimolecular process that starts by decoordination of the isocyanide ligand, producing an oxidative coupling of the akynyl group to [R-C≡C-C≡C-R] and reduction of gold(I) to gold(0) as nanoparticles. The nanoparticles obtained behave as a catalyst in the oxidation of isocyanide (CNR) to isocyanate (OCNR), which in turn cooperates to catalyze the decomposition.  相似文献   

12.
Published data on the use of gold nanoparticles in spectrophotometry are summarized. Data on methods for preparing gold nanoparticles and their optical properties are presented. The main approaches on which spectrophotometic methods of substance determination using gold nanoparticles are based are discussed. Examples of determining of metal ions, anions, and organic compounds are presented.  相似文献   

13.
Plectonema boryanum UTEX 485, a filamentous cyanobacterium, has been reacted with aqueous Au(S(2)O(3))(2)(3)(-) and AuCl(4)(-) solutions ( approximately 400-550 mg/L Au) at 25-100 degrees C for up to 1 month and at 200 degrees C for 1 day. The interaction of cyanobacteria with aqueous Au(S(2)O(3))(2)(3)(-) promoted the precipitation of cubic (100) gold nanoparticles (<10-25 nm) at membrane vesicles and admixed with gold sulfide within cells and encrusted on the cyanobacteria, whereas reaction with AuCl(4)(-) resulted in the precipitation of octahedral (111) gold platelets ( approximately 1-10 microm) in solutions and nanoparticles of gold (<10 nm) within bacterial cells. Functional groups imaged by negative ion TOF-SIMS on (111) faces of the octahedral platelets were predominantly Cl and CN, with smaller amounts of C(2)H and CNO.  相似文献   

14.
Catalysis by gold has become one of the most studied new topics in chemistry in recent years, and yet for many gold acting as a catalyst is, perhaps, a most unlikely possibility since bulk gold is a relatively non-reactive, immutable, ductile metal that is prized for its great beauty and value rather than for the depth of its chemistry. However, when prepared in nanocrystalline form, as a collection of a few hundreds of atoms, it displays remarkable activity as a heterogeneous catalyst for a broad range of redox reactions. Of particular note is the ability of gold, either alone or alloyed with palladium, to catalyse selective oxidation reactions, e.g. alkene epoxidation, alcohol oxidation, and the direct synthesis of hydrogen peroxide by the hydrogenation of molecular oxygen. In this article the recent advances in this exciting new field are explored.  相似文献   

15.
A rapid method for the determination of gold in rocks by neutron activation was developed. The method is based on the quantitative and specific separation of gold with dialkyl sulfide extraction.  相似文献   

16.
The hepatotoxic microcystins, especially microcystin?CLR (MC?CLR), are causing serious problems to public health and fisheries. We describe here a label-free amperometric immunosensor for rapid determination of MC?CLR in water sample. The sensor was prepared by immobilizing antibody on a gold electrode coated with L-cysteine-modified gold nanoparticles. The stepwise self-assembly of the immunosensor was monitored and characterized by means of electrochemical impedance spectroscopy and differential pulse voltammetry. A 0.60?mmol L?1 solution of hydroquinone was used as the electron mediator. The immunosensor was incubated with MC?CLR at 25?°C for 20?min, upon which the differential pulse voltammetric current changed linearly over the concentration range from 0.05 to 15.00???g L?1, with a detection limit of 20?ng L?1. The developed biosensor was used to determine MC?CLR in spiked crude algae samples. The recovery was in the range from 95.6 to 105%. This method is simple, economical and efficient, this making it potentially suitable for field analysis of MC-LR in crude algae and water samples.
Figure
The present investigation combines SAM monolayer with gold nanoparticles monolayer to prepare a stable film to immobilize the antibody, and takes hydroquinone as electron mediator, establishes a miniature, economic, compatible and label-free amperometric immunosensor for the quick detection of MC-LR.  相似文献   

17.
A novel method for fabricating nanostructured gold colloid electrode based on in situ functionalization of self-assembled monolayers (SAMs) of 4-aminothiophenol (4-ATP) on gold electrode is proposed. The in situ functionalization of 4-ATP SAMs yields a redox active monolayer of 4′-mercapto-N-phenylquinone diimine (NPQD). When the amino-rich surface is exposed to gold colloid, the citrate-stabilized gold nanoparticles (GNPs) can be anchored onto the surface of the in situ functionalized electrode by the electrostatic interactions and a new nanostructured gold colloid surface was obtained. The mixed monolayers of in situ functionalized product, NPQD, and 1,4-benzenedimethanethiol (BDMT) can provide a more compact and order platform to fabricate GNPs on the electrode surface. The film formed by this technique has the advantages of high organization and uniformity, which could provide a desirable microenvironment to assemble GNPs and facilitate the concentration of the analyte from the bulk solution to the electrode surface. The nanostructured gold colloid electrode has favorable effect on the electrochemical oxidation of naphthol isomers.  相似文献   

18.
Contrary to some previous reports, it has been found that gold reacts with dithizone in the ratio 1:1 forming a red-brown complex, and in the ratio 2:1 forming a yellow complex, both extractable into chloroform. The proportion of these two complexes in the organic extract depends critically on several factors. Therefore, the use of dithizone as a spectrophotometric reagent and especially as an extractive titrant for gold cannot be recommended. Previous reports on the composition and colour of the dithizonates of palladium are confirmed, except that PdDz is soluble in carbon tetrachloride and in chloroform.  相似文献   

19.
The thiolate-for-thiolate ligand exchange was performed on well-defined gold nanoparticles under an inert atmosphere without any modification of the core size. This reaction is faster than the well-known core etching. Surprisingly, if a chiral thiol is exchanged for its opposite enantiomer, the optical activity in the metal-based electronic transitions is reversed although the form of the CD spectra remains largely unchanged. The extent of inversion corresponds to the overall ee of the chiral ligand in the system. This shows that the chiral arrangement of metal atoms in the metal particle (surface) can not withstand the driving force imposed by the ligand of opposite absolute configuration. If the incoming thiol has a different structure, the electronic transitions in the metal core are slightly modified whereas the absorption onset remains unchanged. These results emphasize the influence of the thiols on the structure of the gold nanoparticles and give insight on the ligand exchange pathways.  相似文献   

20.
Thiolate self-assembly on gold has proven to be a valuable technique for assembling monolayers on a wide variety of substrates. However, the oxidative instability of the thiols, especially aromatic thiols and alpha,omega-dithiols, presents several difficulties. Shown here is that thiocyanates, easily synthesized stable thiol derivatives, can be directly assembled on gold surfaces with no auxiliary reagents required. Assembly is complete in 24 h and leaves a similar gold thiolate structure as seen in typical thiol self-assembled monolayers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号