首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Antioxidant activities of eight indigenous cyanobacterial strains belonging to the genera Oscillatoria, Chroococcidiopsis, Leptolyngbya, Calothrix, Nostoc and Phormidium were studied in relation with their phenolic and flavonoid contents, ranging 3.9–12.6 mg GAE g?1 and 1.7–3.44 mg RE g?1. The highest activities were shown by Leptolyngbya sp. SI-SM (EC50 = 63.45 and 67.49 μg mL?1) and Calothrix sp. SI-SV (EC50 = 65.79 and 69.38 μg mL?1) calculated with ABTS and DPPH assays. Significant negative correlations were seen between total phenolic and flavonoid contents and the antioxidant activities in terms of EC50 values. Furthermore, HPLC detected 15 phenolic compounds with total concentrations ranging from 277.3 to 829.7 μg g?1. The prevalent compounds in most of the strains were rutin, tannic acid, orcinol, phloroglucinol and protocatechuic acid. Cyanobacterial strains showed high potential as a good source of phenolic compounds with potent antioxidative potential which could be beneficial for food, cosmetic and pharmaceutical industries.  相似文献   

2.
This study compared phenolic contents and antioxidant activity in different organs of Acacia albida (leaves and bark) and focuses on identification of phenolic compounds of leaves by HPLC-DAD. The analysed organs exhibited differences in total polyphenol contents (100 and 59.5 mg GAE g? 1 DW). Phenolic contents of leaves were two times higher than those in bark. Ethanolic extracts exhibited good antioxidant activities with IC50 = 26 μg mL? 1 for DPPH and EC50 = 50 μg mL? 1 for FRAP. Identification by HPLC-DAD revealed the presence of nine phenolic compounds known for their high antioxidant activity. The results suggested that this species can be used as source of natural antioxidants.  相似文献   

3.
The chemical composition of eight Tunisian Rosmarinus officinalis L. populations (A–H) from different bioclimatic areas has been examined by gas chromatography (GC) and GC-mass spectrometry. The essential oils are characterised by high amounts of oxygenated monoterpenes (58.2–71.7%) followed by monoterpene hydrocabons (15.1–26.7%). 1,8-Cineole, camphor, α-pinene and borneol are the main representative components. The antioxidant activity was investigated by 2,2-diphenyl-1-picrylhydrazyl radical (DPPH), ferric reducing ability power assay and β-carotene bleaching test. Samples showed antiradical activity by inhibiting DPPH radical with IC50 values ranging from 375.3 to 592.8 μg mL? 1 for samples F and A, respectively. Sample A also showed the most promising activity in β-carotene bleaching test (IC50 of 31.9 μg mL? 1). The essential oils were also screened for acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity. Sample G showed the highest activity against AChE (IC50 of 64.7 μg mL? 1) while sample D (IC50 of 29.5 μg mL? 1) exhibited the most potent activity against BChE.  相似文献   

4.
The present paper describes a method based on the extraction of analytes by multiple hollow fibre liquid-phase microextraction and detection by ion-trap mass spectrometry and electron capture detectors after gas chromatographic separation. The limits of detection are in the range of 0.13–0.67 μg kg?1, five orders of magnitude lower than those reached with the European Commission Official method of analysis, with three orders of magnitude of linear range (from the quantification limits to 400 μg kg?1 for all the analytes) and recoveries in fortified olive oils in the range of 78–104 %. The main advantages of the analytical method are the absence of sample carryover (due to the disposable nature of the membranes), high enrichment factors in the range of 79–488, high throughput and low cost. The repeatability of the analytical method ranged from 8 to 15 % for all the analytes, showing a good performance.  相似文献   

5.
Near‐infrared spectroscopy has been used in nutritional metabolomics fingerprinting for the assessment of the intake of intervention breakfasts prepared with four different vegetable oils that were previously subjected to a deep frying process of 20 cycles for 5 min at 180°C. The target oils were an extra virgin olive oil and three varieties of refined sunflower oil. Of the three latter, one of them was used as such, other was spiked with a synthetic oxidation inhibitor (dimethylsiloxane) and, finally, the last one was enriched with an extract of phenolic compounds from olive pomace, the antioxidant properties of which are well known. Urine sampled from individuals before intake and 2 and 4 h after intake was directly analyzed by NIRS to obtain fingerprint characteristics of the metabolome composition. The resulting urinary patterns were combined for statistical analysis by unsupervised and supervised approaches. Partial least squares‐class modeling enabled to develop class‐models for each intervention breakfast, thus achieving discrimination of urinary fingerprints from individuals after breakfast intake. The models were statistically characterized by estimation of sensitivity and specificity parameters for the training and evaluation (validation) steps. The application of variable importance in projection algorithm enabled to detect the spectral regions with higher significance to explain the variability observed in the partial least squares class‐models. Quantitative differences of variable importance in projection scores discriminated among the different classes under study. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Bengi Uslu  Tugba Özden 《Chromatographia》2013,76(21-22):1487-1494
High efficiency and less elution are the basic requirements of high-speed chromatographic separation. In this study, a new gradient reverse phase chromatographic methods were developed using HPLC and UPLC systems for simultaneous determination of enalapril maleate (ENL) and hydrochlorothiazide (HCZ) in pharmaceutical dosage forms. The chromatographic separations of ENL and HCZ were achieved on a Waters μ-Bondapak C 18, (300 × 3.9 mm, 10 μm) and Waters Acquity BEH C18 (100 × 2.1 mm, 1.7 μm) columns for HPLC within 5.30 min and UPLC within a short retention time of 1.95 min, respectively. A linear response was observed over the concentration range 0.270–399 μg mL?1 of ENL, 0.260–399 μg mL?1 of HCZ for HPLC system and 0.270–399 μg mL?1 of ENL and 0.065–249 μg mL?1 of HCZ for UPLC system. Also, limit of detection for ENL was 1.848 ng mL?1 and 31.477 ng mL?1 for HCZ, 2.804 ng mL?1 for ENL and 2.943 ng mL?1 for HCZ using HPLC and UPLC, respectively. The proposed methods were validated according to ICH guideline with respect to precision, accuracy, and linearity. Forced degradation studies were also performed for both compounds in bulk drug samples to demonstrate the specificity and stability indicating power of the HPLC method. Comparison of system performance with conventional HPLC was made with respect to analysis time, efficiency, and resolution.  相似文献   

7.
Uslu  Bengi  &#;zden  Tugba 《Chromatographia》2013,76(21):1487-1494

High efficiency and less elution are the basic requirements of high-speed chromatographic separation. In this study, a new gradient reverse phase chromatographic methods were developed using HPLC and UPLC systems for simultaneous determination of enalapril maleate (ENL) and hydrochlorothiazide (HCZ) in pharmaceutical dosage forms. The chromatographic separations of ENL and HCZ were achieved on a Waters μ-Bondapak C 18, (300 × 3.9 mm, 10 μm) and Waters Acquity BEH C18 (100 × 2.1 mm, 1.7 μm) columns for HPLC within 5.30 min and UPLC within a short retention time of 1.95 min, respectively. A linear response was observed over the concentration range 0.270–399 μg mL−1 of ENL, 0.260–399 μg mL−1 of HCZ for HPLC system and 0.270–399 μg mL−1 of ENL and 0.065–249 μg mL−1 of HCZ for UPLC system. Also, limit of detection for ENL was 1.848 ng mL−1 and 31.477 ng mL−1 for HCZ, 2.804 ng mL−1 for ENL and 2.943 ng mL−1 for HCZ using HPLC and UPLC, respectively. The proposed methods were validated according to ICH guideline with respect to precision, accuracy, and linearity. Forced degradation studies were also performed for both compounds in bulk drug samples to demonstrate the specificity and stability indicating power of the HPLC method. Comparison of system performance with conventional HPLC was made with respect to analysis time, efficiency, and resolution.

  相似文献   

8.
A novel, rapid and specific ultra performance liquid chromatography-photo diode array detection method was developed for the simultaneous determination of 2,3,5,4′-tetrahydroxystilbene-2-O-β-d-glucoside (TSG), emodin-8-O-β-d-glucoside (EMG), emodin (EM) and physcion (PS). The chromatographic separation was performed on an Acquity BEH C18 column (100 × 2.1 mm i.d., 1.7 μm). The mobile phase was a mixture of 0.3% acetic acid–water and 0.3% acetic acid–acetonitrile employing gradient elution at the flow rate of 0.4 mL min?1. The four compounds behaved linearly in the concentration range between 60.80–3040.00 μg mL?1 (TSG), 0.50–25.00 μg mL?1 (EMG), 2.16–108.00 μg mL?1 (EM) and 1.56–78.00 μg mL?1 (PS), respectively with correlation coefficients >0.999. The precision of the method were below 5% RSD. Recoveries of the four compounds ranged from 95.71 to 102.97%, with RSD values less than 2%.  相似文献   

9.
A simple, rapid and sensitive column liquid chromatographic method was developed and validated to measure simultaneously the amount of ascorbic acid and phenolic acids at single wavelength (240 nm) in order to assess drug release profiles and drug-excipients compatibility studies for a new sustained release tablet formulation and its subsequent stability studies. A combined isocratic and linear gradient reversed-phase LC method was carried out at 240 nm. Quantification was achieved with reference to the external standards. The linearity for concentrations between 0.042 and 0.150 mg mL?1 for ascorbic acid, 0.084–0.250 mg mL?1 for chlorogenic acid, 0.053–0.360 mg mL?1 for caffeic acid, and 0.016–0.250 mg mL?1 for ferulic acid (r > 0.99 for all analytes) were established. The recovery of the active ingredients from the samples was at the range of 92.3–102.9%. Intra- and inter-day precisions were less than 2.5%. The limits of detection and quantification were 8 and 24 μg mL?1 for ascorbic acid, 18 and 54 μg mL?1 for chlorogenic acid, 37 and 112 μg mL?1 for caffeic acid, and 11 and 34 μg mL?1 for ferulic acid. The determination of the four active ingredients was not interfered by the excipients of the products. Samples were stable in the release mediums (37 °C) at least for 12 h.  相似文献   

10.
An RP-HPLC method was developed for the first time to simultaneously determine five major compounds in Polygonum cuspidatum, namely resveratrol, polydatin, anthraglycoside B, emodin and physcion with UV detection at 306 nm. The column was an Agilent Zorbax SB-C18 (250 × 4.6 mm i.d., 5 μm). The separation was carried out with a gradient program. The mobile phase was acetonitrile–water (containing 0.1% formic acid) at a flow rate of 1.0 mL min?1. The standard curve was rectilinear in the range of 2.04–62.96 μg mL?1 (= 0.9998) for resveratrol, 20.13–239.7 μg mL?1 (= 0.9998) for polydatin, 7.19–71.92 μg mL?1 (= 1.0000) for anthraglycoside B, 2.68–83.68 μg mL?1 (= 0.9998) for emodin and 0.60–14.37 μg mL?1 (= 0.9997) for physcion. The recoveries of the markers were 96.0, 106.5, 97.8, 97.9 and 98.1%, respectively. The relative standard deviation of intra-day and inter-day were less than 5.0 and 2.3%. This method was simple, accurate and reproducible. The developed method was successfully applied to analyze five compounds in P. cuspidatum of 20 commercial brands.  相似文献   

11.
Guanidino compounds guanidine, methylguanidine, guanidinoacetic acid, guanidinobutyric acid, guanidinopropionic acid, and guanidinosuccinic acid after derivatization with hexafluoroacetylacetone and ethyl chloroformate at pH 9 in aqueous phase, eluted, and separated from gas chromatographic column HP-5 (30 m × 0.32 mm id) with film thickness of 0.25 μm at an initial column temperature 90 °C for 2 min, followed by heating rate of 10 °C min?1 up to 220 °C with nitrogen flow rate of 1 mL min?1. The detection was by flame ionization detector. The linear calibration ranges of each of guanidino compounds were obtained within 1–10 μg mL?1, and the limit of detection was within 0.014–0.19 μg mL?1. The derivatization and gas chromatography elution and separation were repeatable in terms of retention time and peak height/peak area with relative standard deviation (RSD) (n = 4) within 1.7–2.9 % and 1.4–2.8 %, respectively. The method was applied for the determination of guanidino compounds from deproteinized serum of uremic patients and healthy volunteers, and was found in the range below the limit of quantitation (BLOQ) to 1.25 μg mL?1 with RSD within 1.4–3.6 %, and BLOQ to 0.4 μg mL?1 with RSD 1.3–3.4 %, respectively. A number of pharmaceutical additives did not effect the determination with RSD within ±3.1 %.  相似文献   

12.
The dicarbonyl compounds glyoxal, methylglyoxal, and dimethylglyoxal have been separated by capillary GC on a 30 m × 0.32 mm i.d. HP-5 column after precolumn derivatization with 2,3-diamino-2,3-dimethylbutane at pH 4. Chromatographic separation was complete in 6 min. Nitrogen was used as carrier gas at a flow rate of 2 mL min?1. Split injection was performed with a split ratio of 10:1 (v/v). The derivatives were monitored by flame-ionization detection, and linear calibration plots were obtained in the ranges 0.06–0.69, 0.05–1.01, and 0.07–1.33 μg mL?1 for glyoxal, methylglyoxal, and dimethylglyoxal, respectively; the respective detection limits were 20, 10, and 10 ng mL?1. Glyoxal and methylglyoxal were analyzed in serum and urine from diabetics and from healthy volunteers. Amounts of glyoxal and methylglyoxal in serum from diabetic patients were 0.19–0.33 and 0.20–0.29 μg mL?1, respectively, with respective relative standard deviations (RSD) of 0.8–1.0 and 0.8–1.1%. Amounts of glyoxal and methylglyoxal in serum from healthy volunteers were 0.05–0.08 and 0.04–0.10 μg mL?1, respectively, with respective RSD of 0.9–1.2 and 1.0–1.2%. Levels of glyoxal and methylglyoxal in urine from diabetic patients were 0.18–0.40 and 0.25–0.36 μg mL?1, respectively.  相似文献   

13.
A stability-indicating reversed-phase LC method for analysis of aceclofenac and paracetamol in tablets and in microsphere formulations has been developed and validated. The mobile phase was 80:20 (v/v) methanol–phosphate buffer (10 mM at pH 2.5 ± 0.02). UV detection was at 276 nm. The method was linear over the concentration ranges 16–24 and 80–120 μg mL?1 for aceclofenac and paracetamol, respectively, with recovery in the range 100.9–102.22%. The limits of detection and quantitation for ACF were 0.0369 and 0.1120 μg mL?1, respectively; those for PCM were 0.0631 and 0.1911 μg mL?1, respectively.  相似文献   

14.
A stability-indicating hydrophilic interaction liquid chromatography (HILIC) method has been developed and validated for the quantitative determination of Brimonidine tartrate (BT) formulated as an ophthalmic solution. Isocratic separation was achieved using an acetonitrile-buffer mixture (92:8, v/v) at pH 7.1 on an unmodified silica column (250 × 4.6 mm, 5 μm). The drug was subjected to oxidative, hydrolytic, photolytic and thermal stress conditions and complete separation was achieved for the parent compound and degradation products. The influence of acetonitrile, pH and ionic strength of the buffer was studied. Linearity range and recoveries for BT were 100–400 μg mL?1 and 100.12%, respectively. The method was validated for BT and indicated that the method was sufficiently sensitive with a limit of detection at 0.005 μg mL?1 and a limit of quantitation at 0.02 μg mL?1, respectively.  相似文献   

15.
A new, simple, and original method is described for specific measurement of polyunsaturated fatty acid content in olive oil. This analytical system uses coupled enzymes, lipase and lipoxygenase. The system consists of lipase-catalyzed hydrolysis of triacylglycerol and subsequent lipoxygenation of liberated polyunsaturated fatty acids. The hydroperoxy-fatty acids formed were easily monitored by spectrophotometry at 234 nm. After being optimized, the method was validated in terms of linearity, precision sensitivity, and recovery. Linear calibration graph was obtained in the range 50–500 µg mL?1, with a correlation coefficient higher than 0.921 and a detection limit (S/N?=?3) of 15 µg mL?1. The precision of the method (relative standard deviation) for within and between days is better than 7% and 12%, respectively. The proposed method was successfully applied to the estimation of polyunsaturated fatty acids level in olive oil samples and results obtained were in excellent agreement with those obtained by the classical official method. The proposed method is accurate, simple, cheap, and can be satisfactorily used for routine analysis of edible oils.  相似文献   

16.
A sensitive, selective and accurate ultra performance liquid chromatographic method has been developed and validated for the simultaneous determination of bisoprolol fumarate and hydrochlorothiazide in their combined dosage forms and as well as in spiked human urine samples. The separation was achieved on an Acquity UPLC BEH C18 1.7 μm (2.1 × 50 mm) column, at 40 °C with mobile phase consisting of acetonitrile:phosphate buffer (20 mM) at pH 3.0 with a gradient elution at 225 nm. Bisoprolol fumarate and hydrochlorothiazide were well separated in <1.5 min with good resolution and without any tailing and interference of excipients. The method was fully validated according to ICH guidelines in terms of accuracy, precision, linearity and specificity. A linear response was observed over the concentration range 0.5–150 μg mL?1 for hydrochlorothiazide and 0.5–250 μg mL?1 for bisoprolol fumarate. Limit of detection and limit of quantitation for hydrochlorothiazide were calculated as 0.01 and 0.03 μg mL?1, respectively, and for bisoprolol fumarate were 0.07 and 0.21 μg mL?1, respectively. Moreover, bisoprolol fumarate and hydrochlorothiazide were subjected to degradation conditions such as hydrolytic, oxidative and thermal stress conditions to evaluate the ability of the proposed method for the separation of bisoprolol fumarate and hydrochlorothiazide from their degradation compounds.  相似文献   

17.
A simple and rapid HPLC method using phenacetin (PHN) as internal standard has been developed for simultaneous determination of acetaminophen, caffeine, and chlorphenamine maleate in the product compound paracetamol and chlorphenamine maleate granules. Separation and quantitation were achieved on a 250 mm × 4.6 mm, 5 μm particle, C18 column. The mobile phase was methanol 0.05 mol L?1 aqueous KH2PO4 solution, 45:55 (v/v), containing 0.1% triethylamine and adjusted to pH 3.6 by addition of phosphoric acid; the flow rate was 1.0 mL min?1. Detection of all compounds was by UV absorbance at 260 nm and elution of the analytes was achieved in less than 12 min. The linearity, accuracy, and precision of the method were acceptable to good over the concentration ranges 6.4–153.6 μg mL?1 for acetaminophen, 5.0–120.0 μg mL?1 for caffeine, and 9.6–230.4 μg mL?1 for chlorphenamine maleate.  相似文献   

18.
A rapid and precise LC method was developed for the simultaneous determination of aliskiren hemifumarate (ALS), amlodipine besylate (AML) and hydrochlorothiazide (HCZ) using acetonitrile:25 mM octane sulfonic acid sodium salt monohydrate in water (60:40 v/v) as the mobile phase. The flow rate was maintained at 1.2 mL min?1 on a stationary phase composed of Supelco, Discovery® HS (C18) column (25 cm × 4.6 mm, 5 μm). Isocratic elution was applied throughout the analysis. Detection was carried out at λ max (232 nm) at ambient temperature. The method was validated according to ICH guidelines. Linearity, accuracy and precision were satisfactory over the concentration ranges of 32–320, 2–44 and 4–64 μg mL?1 for ALS, AML and HCZ, respectively. LOD and LOQ were estimated and found to be 0.855 and 2.951 μg mL?1, respectively, for ALS, 0.061 and 0.202 μg mL?1, respectively, for AML as well as 0.052 and 0.174 μg mL?1, respectively, for HCZ. The method was successfully applied for the determination of the three drugs in their co-formulated tablets. The results were compared statistically with reference methods and no significant difference was found. The developed method is specific and accurate for the quality control and routine analysis of the cited drugs in pharmaceutical preparations.  相似文献   

19.
Aksoy  B.  K&#;&#;&#;kg&#;zel  &#;.  Rollas  S. 《Chromatographia》2007,66(1):57-63

The objective of the current study was the development and subsequent validation of a simple, sensitive, precise and stability-indicating reversed-phase HPLC method for the determination of ciprofloxacin HCl in pharmaceutical dosage forms in the presence of its potential impurities. The chromatographic separation of ciprofloxacin HCl and its related compounds was achieved on an Inertsil ODS3 column using UV detection. The optimized mobile phase consisted of phosphoric acid solution: acetonitril. The proposed method provided linear responses within the concentration range 250–750 μg mL−1 for ciprofloxacin HCl and 0.5–1.5 μg mL−1 for its related compounds. LOD and LOQ values for the active substance were 5.159 and 15.632 μg mL−1, respectively. Correlation coefficients (r) of the regression equations for the impurities were greater than 0.99 in all cases. The precision of the method was demonstrated using intra- and inter-day assay RSD% values which were less than 1% in all instances. No interference from any components of pharmaceutical dosage forms or degradation products was observed.

  相似文献   

20.
Metal–organic frameworks (MOFs) are a new class of hybrid inorganic–organic microporous crystalline materials, which possess unique properties such as high surface area, tunable pore size, and good thermal stability. These unique characteristics make MOFs interesting targets for sample pretreatment. In this work, MIL-53 material based on aluminum and containing amine functional groups (NH2-MIL-53(Al)) was synthesized and applied as an efficient sorbent for development of vortex-assisted dispersive micro-solid phase extraction for eight United States Environmental Protection Agency’s priority phenols from aqueous samples prior to analysis by high-performance liquid chromatography with photodiode-array detection. A simple extraction process was designed. The parameters affecting the extraction efficiency, such as amount of sorbent, extraction time, type of desorption solvent and its volume were investigated. The good linearity in the concentration range of 0.0015–10.0000 μg mL?1 with the coefficients of determination of greater than 0.9929, low limits of detection (0.0004–0.0133 μg mL?1) and relative standard deviations of lower than 10% were obtained. The proposed method has been successfully applied to the determination of phenol compounds in different water sample matrices including treated water, waste water, river water, sea water, lake water, drinking water and tap water. In addition, computational simulation was performed to predict the adsorption ability of NH2-MIL-53(Al) towards the studied phenolic compounds. The computational results were in agreement with the experimental studies and it has been proved that NH2-MIL-53(Al) is promising for enrichment of phenolic pollutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号