首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The B3LYP/6-31+G(d) molecular geometry optimized structures of 17 five-membered heterocycles were employed together with the gauge including atomic orbitals (GIAO) density functional theory (DFT) method at the B3LYP/6-31+G(d,p), B3LYP/6-311++G(d,p) and B3LYP/6-311+G(2d,p) levels of theory for the calculation of proton and carbon chemicals shifts and coupling constants. The method of geometry optimization for pyrrole (1), N-methylpyrrole (2) and thiophene (7) using the larger 6-311++G(d,p) basis sets at the B3LYP/6-31+G(d,p), B3LYP/6-311++G(d,p), B3LYP/6-31+G(2d,p) and B3LYP/cc-pVTZ levels of theory gave little difference between calculated and experimental values of coupling constants. In general, the (1)H and 13C chemical shifts for all compounds are in good agreement with theoretical calculations using the smaller 6-31 basis set. The values of nJHH(n=3, 4, 5) and rmnJ(CH)(n=1, 2, 3, 4) were predicted well using the larger 6-31+G(d,p) and 6-311++G(d,p) basis sets and at the B3LYP/6-31+G(d,p), B3LYP/6-311++G(d,p), B3LYP/6-31+G(2d,2p) levels of theory. The computed atomic charges [Mülliken; Natural Bond Orbital Analysis (NBO); Merz-Kollman (MK); CHELP and CHELPG] for the B3LYP/6-311++G(d,p) geometry optimized structures of 1-17 were used to explore correlations with the experimental proton and carbon chemical shifts.  相似文献   

2.
The 1H, 13C and 1H, 13C COSY NMR spectra of salicylohydroxamic acid (sha) were measured in DMSO-d6 solution. The B3LYP GIAO method with the 6-311++G(d,p) basis set was chosen to reproduce the experimental spectra. All possible zusammen and entgegen conformers of monomeric sha were computed. After geometry optimisation (B3LYP/6-311++G(d,p)) only nine independent models of the molecule were shown to be stable. Additionally, the NMR chemical shifts of the Onsager model of the most stable monomer were calculated. The computed chemical shifts for the labile protons for all aforementioned geometries meaningfully underestimated experimental results suggesting the existence of the H-bonded structure of sha in DMSO solution. The most probable two dimeric structures along with two solvent-bounded aggregates were subsequently calculated at the same level of theory. The best agreement was obtained for sha H-bonded with two DMSO molecules (confirmed by the absence of concentration effect). The relative error not exceeding 10 and 4% for chemical shifts in 1H and 13C NMR spectra of sha–(DMSO)2, respectively, showed that the applied method with the B3LYP/6-311++G(d,p) basis set was efficient to predict the NMR shifts of a compound with strong H-bonds. Thus, this allows to assign properly NMR resonances to specific structure formed in DMSO solution.  相似文献   

3.
The GIAO (Gauge Including Atomic Orbitals) DFT (Density Functional Theory) method is applied at the B3LYP/6-31+G(d,p)//B3LYP/6-31+G(d), B3LYP/6-311++G(d,p)//B3LYP/6-31+G(d), B3LYP/6-311+G (2d,p)//B3LYP/6-31+G(d) and B3LYP/6-311++G(d,p)//B3LYP/6-311++G(d,p) levels of theory for the calculation of proton and carbon chemicals shifts and coupling constants for 25 nitro-substituted five-membered heterocycles. Difference (1D NOE) spectra in combination with long-range gHMBC experiments were used as tools for the structural elucidation of nitro-substituted five-membered heterocycles. The assigned NMR data (chemical shifts and coupling constants) for all compounds were found to be in good agreement with theoretical calculations using the GIAO DFT method. The magnitudes of one-bond (1JCH) and long-range (nJCH, n>1) coupling constants were utilized for unambiguous differentiation between regioisomers of nitro-substituted five-membered heterocycles.  相似文献   

4.
A rather neglected family of heterocyclic compounds, the 3-pyrazolines or 2,3-dihydro-1H-pyrazoles, has been studied theoretically at the B3LYP/6–311++G(d,p) level to obtain geometries and energies and at the GIAO/B3LYP/6–311++G(d,p) level for NMR chemical shifts. The calculated barriers of inversion of the N-substituents reproduce adequately the scarce experimental data. The calculated 1H and 13C chemical shifts are consistent with those reported in the literature. A combination of both results, geometries, and 13C chemical shifts, shed light on the conformation of N-phenyl groups.  相似文献   

5.
A theoretical B3LYP/6-311++G(d,p) study of four derivatives of cyclooctadiene bearing two aromatic or heteroaromatic rings is reported. The conformational analysis reproduces well the experimental results (minima and transition states). The GIAO calculated 1H and 13C chemical shifts proved useful in solving some stereochemical questions.  相似文献   

6.
The multidimensional Conformational Potential Energy Hypersurface (PEHS) of cyclotrisarcosyl was comprehensively investigated at the DFT (B3LYP/6-31G(d), B3LYP/6-31G(d,p) and B3LYP/6-311++G(d,p)), levels of theory. The equilibrium structures, their relative stability, and the Transition State (TS) structures involved in the conformational interconversion pathways were analyzed. Aug-cc-pVTZ//B3LYP/6-311++G(d,p) and MP2/6-31G(d)//B3LYP/6-311++G(d,p) single point calculations predict a symmetric cis-cis-cis crown conformation as the energetically preferred form for this compound, which is in agreement with the experimental data. The conformational interconversion between the global minimum and the twist form requires 20.88 kcal mol-1 at the MP2/6-31G(d)//B3LYP/6-311++G(d,p) level of theory. Our results allow us to form a concise idea about the internal intricacies of the PEHSs of this cyclic tripeptide, describing the conformations as well as the conformational interconversion processes in this hypersurface. In addition, a comparative analysis between the conformational behaviors of cyclotrisarcosyl with that previously reported for cyclotriglycine was carried out  相似文献   

7.
Chemical shifts of some reduced symmetry peripheral fused-ring-substituted phthalocyanines, namely Zn3B1N, Zncis2B2N, Zntrans2B2N, Zn1B3N and Zn3B0N, have been calculated at density functional B3LYP level using the gauge-independent atomic orbital (GIAO) method. The geometries were optimized using the 6-31G(d) basis set and the following NMR calculations were performed using 6-31G(d) and 6-311G(d,p) basis sets, respectively. The calculated NMR shielding tensors and chemical shifts are compared with previous experimental results. The chemical shifts are assigned according to the calculated data and satisfying results are obtained. The NMR shielding tensor simulation of Zn3B0N has been raised as a significant theoretical topic.  相似文献   

8.
Alkorta  Ibon  Elguero  José 《Structural chemistry》2010,21(4):885-891

A theoretical B3LYP/6-311++G(d,p) study of four derivatives of cyclooctadiene bearing two aromatic or heteroaromatic rings is reported. The conformational analysis reproduces well the experimental results (minima and transition states). The GIAO calculated 1H and 13C chemical shifts proved useful in solving some stereochemical questions.

  相似文献   

9.
Conformational exploration of five 2,5-diaryl-4-methyl-2,4-dihydro-3H-1,2,4-triazol-3-ones has been carried out based on a combination of their NMR chemical shifts determined in CDCl3 and the scrutiny of their computed relative energies and absolute shieldings calculated at the DFT/GIAO/B3LYP/6–311++G(d,p) level. The very flat potential energy curves corresponding to the three relevant single bond rotations were explored by calculating the energy of the rotational barriers and comparing the experimental chemical shifts with those theoretically calculated in each rotamer by statistical analysis.  相似文献   

10.
The combined use of 1H NMR spectroscopy with theoretical calculations of chemical shifts (GIAO) and coupling constants (B3LYP/6-311 ++G**) of a 5-hydroxy-5-trifluoromethyl-Delta2-isoxazoline has enabled solving the problem of the assignments of the diastereotopic protons in this compound. This result has been extended to 5-hydroxy-5-trifluoromethyl-Delta2-pyrazolines and the corresponding 5-trichloromethyl derivatives.  相似文献   

11.
We perform a systematic investigation of how the B3LYP/6-311+G(2d,p) calculated 13C nuclear magnetic shielding constants depend on the 6-31G(d)-optimized geometries for a set of 18 molecules with various chemical environments. For absolute shieldings, the Hartree-Fock (HF)-optimized geometries lead to a mean absolute deviation (MAD) of 5.65 ppm, while the BLYP- and B3LYP-optimized geometries give MADs of 13.07 and 10.14 ppm, respectively. For chemical shifts, the HF, BLYP and B3LYP geometries lead to MADs of 2.36, 5.80, and 4.43 ppm, respectively. We find that the deshielding tendency of B3LYP can be effectively compensated by using the HF-optimized geometries. When we apply the B3LYP//HF protocol to versicolorin A and 5alpha-androstan-3,17-dione, MADs of 1.86 and 1.41 ppm, respectively, are obtained for chemical shifts, in satisfactory agreement with the experiment.  相似文献   

12.
The (19)F NMR shieldings for 53 kinds of perfluoro compounds were calculated by the B3LYP-GIAO method using the 6-31G(d), 6-31+G(d), 6-31G(d,p), 6-31++G(d,p), 6-311G(d,p), 6-311++G(d,p), 6-311G(2d,2p), 6-311++G(2d,2p), 6-311++G(2df,2p), 6-311++G(3d,2p), and 6-311++G(3df,2p) basis sets. The diffuse functions markedly reduce the difference between the calculated and experimental chemical shifts. The calculations using the 6-31++G(d,p) basis set give the chemical shifts within 10 ppm deviations from experimental values except for the fluorine nuclei attached to an oxygen atom, a four- and a six-coordinated sulfur atom, and FC(CF(3))(2) attached to a sulfur atom.  相似文献   

13.
运用B3LYP和MP2方法在6-311++G(d,p)基组水平上, 对H2CO-XY(XY=F2、Cl2、Br2、ClF、BrF、BrCl)卤键体系进行构型全优化, 得到了O…X—Y型卤键复合物. 结果表明, MP2/6-311++G(d,p)计算结果与实验值较吻合. 并在MP2水平下计算了分子间的相互作用能, 用完全均衡校正CP(counterpoise procedure)方法对基函数重叠误差(BSSE)进行了校正. 利用电子密度拓扑分析方法对卤键复合物的电子密度拓扑性质进行了分析研究.  相似文献   

14.
Nuclear magnetic shielding tensors of porphine have been calculated at density functional B3LYP and PBE level using the gauge independent atomic orbital (GIAO) method. The geometries used were optimized using the 6-31G(d) basis set and the NMR calculations were performed using 6-31G(d) and 6-311G(d,p) basis sets, respectively. The calculated NMR shielding tensors and chemical shifts of porphine are compared with previous calculations as well as experimental data and satisfying results are obtained. Further NMR calculations are extended to metal-free and metallo-porphyrazine, -phthalocyanine, and -naphthalocyanine for the first time and the results are compared with experimental data available. The chemical shifts of the atoms in these compounds are assigned according to the experimental data available.  相似文献   

15.
Twenty one conformationally fixed amines and their N,N-dimethyl derivatives were obtained commercially or synthesized. These included cis and trans 4-t-butyl cyclohexylamine, 2-exo and 2-endo norbornylamine, 2-adamantylamine, 4-phenylpiperidine, 1-napthylamine and tetrahydro-1-napthylamine. The (1)H NMR spectra of these amines were measured in CDCl(3) solution, assigned and the (1)H chemical shifts given. This data was used to investigate the effect of the amino group on the (1)H chemical shifts in these molecules. These effects were analyzed using the CHARGE model. This calculates the electric field and steric effects of the amino group for protons more than three bonds removed, together with functions for the calculation of two-bond and three-bond effects. The rotational isomerism about the C--N bond of the amino group was investigated by ab initio calculations of the potential energy surface (PES) about this bond at the HF/3-21G level. The resulting conformers were then minimized at the B3LYP/6-311 + + G (d,p) level. These geometries were then used to calculate the (1)H chemical shifts in the above compounds by CHARGE and the ab initio gauge-invariant atomic orbital (GIAO) method at the B3LYP/6-311 + + G(d,p) level and the shifts were compared with those observed. The compounds investigated gave 170 (1)H chemical shifts ranging from 0.60 to 8.2 ppm. The rms errors (obs.-calc.) were ca 0.1 ppm (CHARGE) and ca 0.2 ppm (GIAO). Large deviations of ca 1.0 ppm were observed for the NH protons in the GIAO calculations. The complex spectra of alkyl and aryl amines can thus be successfully predicted by both ab initio and semiempirical methods except for the NH protons, for which the ab initio calculations are not sufficiently accurate.  相似文献   

16.
Structure of protonated nitro compounds was investigated by calculations at the levels MP2(FC)/6-311++G(2d,2p)//MP2(FC)/6-311++G(2d,2p)(nitromethane and reference compounds) or B3LYP/6-311+G(d,p)//B3LYP/6-311+G(d,p)(nitrobenzene and its 18 meta- and para-substituted derivatives). The group NO2H+ reveals many similarities with the isoelectronic group CO2H as the preferred conformation, conformational equilibrium, and stabilization by interaction (resonance) within the group quantified by means of isodesmic reactions. However, there is a difference in the interaction with donor groups (for instance in 4-nitroaniline) that is much stronger with NO2H+ than with CO2H. This interaction may be called resonance and may be described by standard resonance formulas, but these formulas predict only partially the geometry and cannot explain the great interaction energy.  相似文献   

17.
The direct molecular structure implementations of the gage-including atomic orbital (GIAO), individual gages for atoms in molecules (IGAIM) and continuous set of gage transformations (CSGT) methods for calculating nuclear magnetic shielding tensors at both the Hartree-Fock (HF) and density functional (B3LYP) levels of theory with 6-31G(d), 6-311G(d), 6-31++G(d,p), 6-311++G(d,p), and 6-311++G(df,pd) basis sets are presented. Dependence on the 1H and 13C NMR chemical shifts on the choice of method and basis set have been investigated. Also, these chemical shifts of 2-aryl-1,3,4-oxadiazoles 5a–g have been performed related to dihedral angles (C4–C3–C2–O) of two conformers. The optimized molecular geometries and 1H and 13C chemical shift values of 2-aryl-1,3,4-oxadiazoles 5a–g in the ground state have been obtained. The linear correlation coefficients of 13C NMR chemical shifts for these molecules were given. The new nuclear magnetic shielding tensors of tetramethylsilane (TMS) were calculated. The data of 2-aryl-1,3,4-oxadiazole derivatives display significant molecular structure and NMR analysis. Also, these provide the basis for future design of efficient materials having the 1,3,4-oxadiazole core.  相似文献   

18.
The (1)H NMR chemical shifts were theoretically computed for the organic dyes 2-(2,6-dimethyl-4H-pyran-4-ylidene)-malononitrile (1), cyano-(2,6-dimethyl-4H-pyran-4-ylidene)-acetic acid methyl ester (2), 2-(2,6-bis(4-(dimethylamino)styryl)-4H-pyran-4-ylidene)-malononitrile (3), and methyl 2-(2,6-bis(4-(dimethylamino)styryl)-4H-pyran-4-ylidene)-2-cyanoacetate (4) at the GIAO/B3LYP/6-311++G(d,p)//B3LYP/6-311++G(d,p) level of theory. Moreover, the intramolecular rotational barriers of the molecules were calculated to evaluate the internal flexibility with respect to the torsional degrees of freedom, and the nuclear-independent chemical shifts (NICS) were employed to analyze the ring currents. The difference was explained in terms of intramolecular hydrogen bonds and ring currents of the molecules. The (1)H NMR spectra were reproduced by experiments for the comparison with computationally constructed data. Our results suggest a good guideline in interpreting (1)H NMR chemical shifts using computational methods and furthermore a reliable perspective for designing molecular structures.  相似文献   

19.
The structures of a series of beryllium containing complexes have been optimized at the B3LYP/6-31G(d) level and their (9)Be magnetic shielding values have been determined using B3LYP/6-311G+g(2d,p) and the gauge-including atomic orbital (GIAO) method. The calculated chemical shifts are in excellent agreement with experimental values. The performance of a variety of NMR methods (SGO, IGAIM, CSGT) were also examined but were found to be inferior to the GIAO method at the chosen level of theory employed. The theoretical method has been utilized to predict the beryllium chemical shifts of structurally characterized complexes for which no measured (9)Be NMR spectrum exists, and to investigate a literature complex with an unusual (9)Be NMR chemical shift. A new standard for beryllium NMR in nonaqueous solvents has been suggested.  相似文献   

20.
Tris(trifluoromethyl)boron complexes have unusual properties and may find applications in many fields of chemistry, biology, and physics. To gain insight into their NMR properties, the isotropic 11B, 13C, and 19F NMR chemical shifts of a series of tris(trifluoromethyl)boron complexes were systematically studied using the gauge‐included atomic orbitals (GIAO) method at the levels of B3LYP/6‐31 + G(d,p)//B3LYP/6‐31G* and B3LYP/6‐311 + G(d,p)//B3LYP/6‐311 + G(d,p). Solvent effects were taken into account by polarizable continuum models (PCM). The calculated results were compared with the experimental values. The reason that the structurally inequivalent fluorine atoms in a specific species give a same chemical shift in experimental measurements is attributed to the fast rotation of CF3 group around the B? C(F3) bond because of the low energy barrier. The calculated 11B, 13C(F3), and 19F chemical shifts are in good agreement with the experimental measurements, while the deviations of calculated 13C(X, X = O, N) chemical shifts are slightly large. For the latter, the average absolute deviations of the results from B3LYP/6‐311 + G(d,p)//B3LYP/6‐311 + G(d,p) are smaller than those from B3LYP/6‐31 + G(d,p)//B3LYP/6‐31G*, and the inclusion of PCM reduces the deviation values. The calculated 19F and 11B chemical shieldings of (CF3)3BCO are greatly dependent on the optimized structures, while the influence of structural parameters on the calculated 13C chemical shieldings is minor. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号