首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
使用金属有机化学气相沉积(metal organic chemical vapor deposition, MOCVD)方法生长了三个具有不同垒层温度的InGaN/GaN量子阱。由于高密度V型坑的形成,完整的量子阱结构被破坏,转变成了InGaN量子点(quantum dots, QDs)/量子阱(quantum well, QW)复合结构。通过变功率光致发光谱和变温光致发光谱,分析了在不同的垒层温度下量子限制斯塔克效应(quantum confined Stark effect, QCSE)、非辐射复合中心密度和载流子局域化效应的变化。结果表明:在较低的垒层温度下,QCSE较弱,因为在较低的温度下,V型坑的深度较深,应力释放较明显,残余应变较低;非辐射复合中心密度也随着温度的升高而逐渐增大;样品的内量子效率(internal quantum efficiency, IQE)随着垒层生长温度的升高而降低。QCSE的增强和非辐射复合中心密度的增大是垒层生长温度升高时内量子效率下降的主要因素。  相似文献   

2.
<正>中国科学院半导体研究所超晶格国家重点实验室研究员牛智川课题组近年来深入系统地研究了In(Ga)As量子点、量子环、纳米线中量子点、纳米线中量子环的自组织外延生长、液滴外延生长方法。最近,课题组查国伟、喻颖等在研究中发现:通过优化GaAs纳米线侧壁淀积Ga液滴成核温度与晶化条件等参数,可以生长出密度与形貌可控量子点、量子环等新奇量子结构,首次发现单根纳米线侧壁形成单个"方形"量子环且具有高品质发光特性。(Nanoscale,10.1039(2013))。他们进一步生长了GaAs/AlGaAs纳米线中的GaAs量子点,以及置于AlGaAs量子环中心并覆盖AlGaAs  相似文献   

3.
通过水热法制备了Cu-In-Zn-S (CIZS)四元量子点,采用X射线衍射仪(XRD)、能谱仪(EDS)、透射电子显微镜(TEM)、荧光分光光度计(PL)研究了不同反应温度和Cu/In摩尔比对CIZS量子点的物相组成、显微形貌以及荧光性能的影响,同时利用傅里叶变换红外光谱仪(FT-IR)对CIZS量子点的表面性质进行表征.结果 表明,量子点颗粒在水溶液中呈类球型并且具有良好的分散性,粒径大小为3~4 nm.合成的CIZS量子点具有优异的荧光性能,随着反应温度的升高,量子点的荧光强度逐渐增强;当反应温度为110℃时,量子点的荧光强度最高;然而,过高的反应温度造成了In2S3杂质相的形成,荧光强度随之降低.此外,随着Cu/In摩尔比的减小,CIZS量子点的发光峰位由675 nm蓝移至644 nm,同时量子点的荧光强度逐渐提高;当n(Cu)/n(In)=1∶7时,荧光强度达到最高值.同时,量子产率(QYs)达到最大值6.2;.基于CIZS量子点的LED成功实现发光,其中显色指数达81.2,发光效率为36.8 lm/W,表明了CIZS量子点在照明领域良好的应用前景.  相似文献   

4.
采用热注入的方法在空气氛围中合成PbX(X=S,Se)量子点,液体石蜡和磷酸三丁酯(TBP)作为不同的溶剂优化PbSe量子点的合成;使用六甲基二硅硫烷(TMS)作为硫源合成了第一激子吸收峰在900 ~ 1500 nm分布的PbS量子点.通过透射电镜(TEM)、X射线衍射(XRD)和吸收光谱等测试手段对合成的物质进行成分与光学性能分析表征,对比研究了Ⅳ-Ⅵ族化合物量子点在成核过程中的差异.结果表明在相同的实验条件下PbS量子点的反应条件相对温和,量子限域效应明显;而PbSe量子点的合成对环境的要求更加严苛,反应温度更高,量子点的尺寸分布更宽.  相似文献   

5.
以NaTeO3为碲源,还原型谷胱甘肽(GSH)为稳定剂,一步合成CdTe量子点.研究了参与反应回流的镉与碲摩尔比和Cd2+浓度对CdTe量子点生长速率的影响,并用荧光光谱、X射线衍射光谱及透射电子显微镜对其性能进行表征.结果表明:GSH稳定的CdTe量子点具有闪锌矿结构、球形形貌;在pH =8.5,n(Cd2+)∶ n(GSH)=1∶1.2,C(Cd2)=0.67 mmol/L,n(Cd)∶ n(Te)=6∶1时,CdTe量子点荧光量子效率最高可达51.53;,并且量子点生长的速率在初期的1h内达到最高点,并随着时间的延长呈下降趋势.  相似文献   

6.
采用表面钝化和MOCVD低温生长在蓝宝石(0001)面(即C面)和蓝宝石(1102)面(即R面)上形成了InGaN量子点,并构成了该量子点的多层结构.原子力显微镜测试的结果表明单层InGaN量子点平均宽约40nm,高约15nm;而多层量子点上层的量子点则比单层的InGaN量子点大.R面蓝宝石衬底上生长的InGaN量子点和C面蓝宝石衬底上生长的InGaN量子点相比,其PL谱不仅强度高,而且没有多峰结构.这是由于在C面蓝宝石衬底上生长的InGaN/GaN多层量子点沿生长方向[0001]存在较强的内建电场,而在R面蓝宝石衬底上得到的多层量子点沿着生长方向[1120]没有内建电场.InGaN量子点变温光致发光(PL)谱研究发现量子点相关的峰有快速红移现象,这是量子点系统所特有的PL谱特征.用在R面蓝宝石上生长的InGaN量子点作有源层有望避免内建电场的影响,得到高量子效率且发光波长稳定的发光器件.  相似文献   

7.
本文研究了N型掺杂ZnSe/BeTe/ZnSeⅡ型量子阱空间间接发光谱的外加电场依赖性.实验结果表明,其发光谱只显示了一个线性偏振度较低的发光峰.这是由于掺杂电子屏蔽了Ⅱ型量子阱中的内秉电场,并使得两个ZnSe阱层具有相同的势.同时该发光谱具有反玻耳兹曼(inverse-Boltzmann)分布,并且线型和线性偏振度在...  相似文献   

8.
量子光源是量子通信和光量子计算的基础模块。光子的单光子性保证了通信的无条件安全,光子的高不可分辨性保证了计算方案的复杂度。在各类固态材料候选体系中,基于半导体量子点体系的单光子源和纠缠光子源保持着量子光源品质的最高纪录,展现了巨大的潜力。分子束外延是目前最适合制备固态半导体量子点的生长方法,超高真空、超纯材料、原位监测和生长过程中参数的高度可控等特点使其优势明显。为了实现同时具备高效率、高单光子纯度、高不可分辨性和高纠缠保真度的量子光源,量子点的材料生长、外部调控、钝化技术和测量技术等都需要系统优化提升。本文将综述基于分子束外延生长实现固态量子点体系量子光源的基础材料与器件的研究进展,讨论两种常见量子点的制备原理以及外延生长中各类参数对量子点品质的影响,包括背景真空、源料纯度、衬底温度、生长速率和束流比等。本文随后简介了外部调控、表面钝化、测量技术等手段优化量子光源器件性能的技术细节和实验进展,最后对量子光源在基础科学研究和量子网络构建中取得的进展进行总结,并对其实际应用与发展前景进行展望。  相似文献   

9.
赵梦杰  叶帅  宋军 《人工晶体学报》2019,48(8):1469-1473
由于具有高量子效率、单色性好以及发光颜色在可见光范围内可调等特性,以CsPbX3(X=Cl、Br、I)为代表的钙钛矿量子点正在受到越来越多的关注.文中采用了溶剂热法,在低沸点且可作为分散剂的正己烷中直接合成了CsPbBr3量子点.研究表明,该方法制备的CsPbBr3量子点为典型的立方钙钛矿结构,其粒径均匀,大小在15 nm左右.该CsPbBr3量子点在400 nm紫外光的照射下发出很强的绿色荧光,中心波长为514 nm,半峰宽仅为18 nm,具有很好的单色性.通过制备条件的优化,获得该CsPbBr3量子点的最佳温度在90℃左右.通过简单的和Cl或I的原位离子交换作用,该CsPbBr3量子点发光波长可以在415~670 nm之间任意调节.  相似文献   

10.
我们利用光致发光(PL)和激发光谱(PLE)技术研究了GaAs量子阱的光谱性质,在GaAs量子阱的光致发光中观察到上转换发光,首次提出GaAs量子阱结构可能实现激光制冷,探索了GaAs量子阱结构的发光机理。  相似文献   

11.
InAs/GaAs量子点的生长形貌和特性受不同生长环境和生长条件影响.本文借助光致发光光谱(PL)特性表征方法,通过实验生长,对比研究不同生长温度下获得的量子点性能,结合当前三结叠层GaInP/GaAs/C-e(2-terminal)电池存在的问题,以及该电池的设计、制作要求,分析了InAs量子点的不同生长温度对于具有量子点结构的中电池吸收的影响.  相似文献   

12.
硫化镉量子线及其阵列制备方法的评述   总被引:1,自引:1,他引:0  
一维CdS半导体纳米材料(量子线)因其在磁学、电学及非线性光学等方面具有CdS体材料所不具备的特殊性质而倍受关注。在过去的几十年里,人们在CdS量子线的制备和应用方面进行了大量的研究。本文在总结硫化镉量子线及其阵列的制备方法基础上,对CdS量子线的发展趋势进行了讨论。  相似文献   

13.
以葡萄糖胺(Glucosamine,GIcN)为稳定剂,以Cd(Ac)2 ·2H2O和Na2S ·9H2O作为反应剂,在室温下水相合成了CdS量子点.通过X射线衍射(XRD)、透射电镜(TEM)、紫外-可见吸收光谱(UV -Vis)和荧光发射光谱(PL)对样品的结构、形貌和光学性能进行了表征,考察了反应体系的pH值、GlcN/Cd的物质的量比对量子点光谱性能的影响.结果表明,所获得的CdS量子点为立方闪锌矿结构,且尺寸分布均一,结晶度高,具有丰富的表面缺陷和量子尺寸限域效应.同时,对CdS量子点形成的可能机理进行了初步的探讨.  相似文献   

14.
孙聪  黄风华 《人工晶体学报》2013,42(10):2028-2032
选用L-半胱氨酸作为修饰剂,采用共沉淀法在水溶液中合成了ZnS∶ Co/ZnS量子点.通过X-射线粉末衍射(XRD)、透射电镜(TEM)、红外光谱(IR)、紫外可见光谱(UV-Vis)和荧光光谱(PL)对量子点的结构、形貌、组成及光谱性质进行表征.结果表明:ZnS∶ Co/ZnS量子点为立方闪锌矿结构,颗粒呈球形,分散性好,颗粒尺寸约为3.3nm1;随着ZnS壳层增厚,ZnS∶ Co/ZnS量子点的荧光发射峰强度先增大后减小,核壳比为1∶0.15时发光强度达到最大.Co2+的掺杂和ZnS壳层的形成使量子点的荧光量子产率从2.4;增加到9.8;.L-半胱氨酸分子通过其巯基与量子点表面的金属离子配位,从而修饰在量子点的表面,使该量子点具有水溶性、生物相容性和生物可偶联性.  相似文献   

15.
通过可控的化学腐蚀法完成了对碳化硅量子点的制备,而后经超声空化作用及高速层析裁剪获得水相的碳化硅量子点溶液,利用化学偶联法,一步实现了SiC量子点的表面物化特性调控.通过对制备工艺参数调整前后量子点微观形貌、光谱特性的表征,结果表明:腐蚀次数、腐蚀剂组分及腐蚀剂配比是影响碳化硅量子点光致发光效率的主要因素,调整腐蚀次数与腐蚀剂组分的配比,同时加入偶联剂分析纯硫酸,当以V(HF):V(HNO3):V(H2 SO4)=6:1:1(体积比)的组分及比例腐蚀球磨后的β-SiC粉体时,制备出的水相碳化硅量子点光致发光相对强度最为理想.同时对碳化硅量子点表面巯基的形成机制与修饰稳定性进行了初步分析.  相似文献   

16.
以L-半胱氨酸为修饰剂,采用化学共沉淀法在水溶液中合成了ZnS∶Ni量子点.通过X-射线粉末衍射(XRD)、透射电镜(TEM)、红外光谱(IR)和荧光光谱(PL)对量子点的结构、组成、形貌及光谱性质进行表征.结果表明:ZnS∶ Ni量子点为立方闪锌矿结构,颗粒呈球形,平均尺寸约为2.9 nm,分散性良好;随着Ni2掺杂浓度的增加,ZnS∶ Ni量子点的荧光发射强度先增强后减弱,当Ni2+掺杂浓度为0.7;时,发射强度达到最大.经室内自然光照后,ZnS∶ Ni量子点的荧光量子产率可达15.4;.修饰在量子点表面的L-半胱氨酸使该量子点具有良好的水溶性、生物相容性和生物大分子可偶联性.  相似文献   

17.
采用两种碳源合成的碳量子点作为光还原剂,在可见光照射下还原硝酸银(AgNO3)制备出了两种不同尺寸的银/碳量子点(Ag/CDs)复合结构.透射电镜(TEM)结果表明获得了两种尺寸不同的Ag与CDs复合结构.紫外-可见吸收光谱表明尺寸较小的复合结构在可见光区域展现出了更强的光吸收,从而导致了尺寸较小的Ag/CDs复合结构在可见光下对亚甲基兰拥有更强的光降解能力.  相似文献   

18.
采用共沉淀法合成NaYF4:Er3+,Yb3+纳米材料,测量其吸收光谱和荧光光谱.利用吸收光谱,计算Er3+离子的辐射跃迁几率.分析489 nm激发下NaYF4:Er3+,Yb3+的量子剪裁近红外荧光光谱,观察到中心波长位于980 nm (Yb3+:2F5/2→2 F7/2)的发射峰;拟合不同Yb3+掺杂浓度下Er3+的2H11/2能级的荧光衰减曲线,得到随着Yb3+浓度的增加,Er3+的寿命逐渐缩短,表明Er3+→Yb3+的能量传递效率和量子剪裁效率逐渐提高.通过Er3+-Yb3+量子剪裁速率方程,计算得最佳掺杂浓度样品NaYF4:2;Er3+,10;Yb3+纳米材料的量子剪裁效率为149.6;.  相似文献   

19.
<正>近日,中科院苏州纳米所赵志刚课题组和苏州大学耿凤霞课题组合作开发出一种具备超快电化学响应性能的新型氧化钨量子点电极材料。该成果发表在近期出版的国际期刊《先进材料》上。与传统块体材料相比,量子点(零维纳米材料)的小尺寸、大比表面积、高的表面原子比例意味着材料与电解液的充分接触以及更短的离子扩散距离,堪称理想的电极材料。然而,将量子点应用于电化学的研究结果大多并不理想,这与常见量子点材料电化学活性差、表面有机配体包覆以及粒子间界面电阻较高密切相关。  相似文献   

20.
以一锅法合成的CdS量子点为核心,采用单源分子前驱体法成功制备了高质量的油溶性CdS/ZnS核-壳量子点,量子点荧光量子产率高达43.7;,荧光寿命为306 ns.进一步用谷胱甘肽作为相转移剂,将油溶性CdS/ZnS量子点成功转入水相.采用紫外-可见吸收光谱(UV-vis)、荧光光谱(PL)、时间分辨荧光光谱(TRF)、透射电镜(TEM)和X-射线粉末衍射(XRD)对量子点的光谱性质和形貌、结构进行表征.结果表明:谷胱甘肽修饰的量子点水溶性好,粒径均匀,分散性良好,荧光量子产率高,荧光寿命长,显示了较好的生物分析应用前景.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号