首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以柠檬酸为络合剂,采用微波辅助溶胶-凝胶法制备了红色荧光粉NaLa(MoO4)2∶Eu3+,运用热重-差热分析仪、红外光谱、X射线粉末衍射仪、扫描电子显微镜和荧光分光光度计等对样品进行了分析和表征.结果表明:前驱体经700 ~900℃焙烧均能得到目标产物NaLa(Mo04) 2∶Eu3+,且具有四方晶系白钨矿结构;样品由尺寸约1~3μm类球形小颗粒组成.激发光谱在250~350 nm处有一宽的吸收带,峰值位于290 nm,属于Mo-O,Eu-O的电荷迁移带;350~ 500 nm范围内的系列尖峰是由Eu3+的4f-4f跃迁所致;发射光谱由一系列发射峰组成,主峰位于616nm处,属于5Do→+7F2电偶极跃迁发射.同时研究了焙烧温度和时间、柠檬酸和乙二醇的摩尔比,以及助熔剂等对样品发光性能的影响.  相似文献   

2.
通过PEG-400辅助水热法制备了NaLa(WO4)2,利用XRD、SEM、FTIR、TG等方法对粉体的结构、形貌、成分进行了表征.研究结果表明,pH值变化从pH=1.0到pH=9.0时,产物会发生由WO3-NaLa(WO4)2的物相转化.在180℃,pH =9.0,VPEG-400∶VH2O=1∶1时获得单分散“千层酥”状三维微晶NaLa(WO4)2,Eu3+掺入后,在λex=394 nm的激发波长下,Eu3+的5D0→7F2的跃迁强度远大于5D0→7F1的跃迁强度,Eu3+处于NaLa(WO4)2晶格非反演对称中心位置,粉体表现出较强的红光发射,继续增大Eu3+掺杂量至20mol;,会出现浓度猝灭.  相似文献   

3.
采用微波辅助溶胶-凝胶法合成了NaLa(MoO4)2∶Sm3+新型系列红色荧光粉.通过热重-差热分析仪分析了前驱体的热分解过程,运用X射线衍射仪、扫描电镜及荧光分光光度计等手段分别对样品的物相结构、微观形貌、发光性质等进行分析表征.结果表明:前驱体在700℃以上煅烧即可得到NaLa(MoO4)2的纯相;800℃煅烧所得样品粒度均匀,尺寸约为700~ 800 nm;所合成的NaLa(MoO4)2∶Sm3+主要的激发峰位于307 nm、364 nm、377 nm、405 nm、469 nm处,其中最强的激发峰位于405 nm;发射光谱主要由571 nm、607 nm、647 nm处的三个发射峰组成,分别对应Sm3+的4G5/2→6H5/2、4G5/2→6H7/2、4G5/2→6H9/2跃迁,其中最强发射峰位于647 nm处,说明样品在紫外、近紫外及蓝光区均可被激发,且发出红光.研究发现:煅烧温度为800℃、Sm3+掺杂浓度为0.04时,样品发光强度最大,其浓度淬灭主要是由电偶极-电偶极相互作用引起的.  相似文献   

4.
以水热法合成了球形NaY(MoO4)2∶Sm3+红色荧光粉,通过X-射线衍射(XRD)、场发射扫描电镜(FESEM)、光致荧光光谱(PL)进行表征,考察荧光粉的晶相、形貌及发光性能.研究了Sm3+掺杂浓度对发光性能的影响,通过调节体系酸度对样品形貌进行控制.实验结果表明:180℃水热反应20 h,pH=7.0时控制合成出规则球形NaY(MoO4)2粉体,当Sm3+的摩尔掺杂量为4;时,发射峰强度达到最大,继续增加Sm3+浓度,其发射峰强度减弱,出现了浓度猝灭效应.  相似文献   

5.
采用溶胶凝胶-燃烧法,柠檬酸为络合剂合成出系列Gd2(MoO4)3:Eu3+荧光粉.利用X射线衍射(XRD)、扫描电子显微镜(SEM)和荧光光谱对样品的结构、形貌和发光性能进行了研究.XRD分析表明:稀土离子与柠檬酸为1:0.5时,800℃热处理获得单斜结构的Gd2(MoO4)3:Eu3+荧光粉.单斜结构的Gd2(MoO4)3:Eu3+荧光粉到正交结构的Gd2(MoO4)3:Eu3+荧光粉的转换可以通过改变稀土离子与柠檬酸摩尔比和热处理温度等合成条件实现.Gd2(MoO4)3:Eu3+荧光粉的形貌受合成条件的影响.荧光光谱研究表明:Gd2(MoO4)3:Eu3+荧光粉的主发射峰位于616 nm处来自于Eu3+5D07F2电偶极跃迁.正交结构的Gd2(MoO4)3:Eu3+荧光粉发射强度明显高于单斜结构的荧光粉.计算5D07F25D07F1跃迁发射的相对强度比值表明:正交结构的Gd2(MoO4)3:Eu3+中Eu3+局域环境的对称性较高。  相似文献   

6.
董园园  黄榕  徐家跃  张彦 《人工晶体学报》2015,44(12):3543-3547
利用固相法合成了Eu3+掺杂的NaY(Mo/WO4)2红色荧光粉,并用对所获得的样品进行了XRD和激发-发射光谱表征.研究发现随着Eu3+掺杂量逐渐增加,发光强度随之变化.当Eu3掺杂浓度为30mo1;,荧光粉具有最强的发光强度.荧光粉能被395 nm波长紫外光有效激发,发射光谱主要体现为Eu3+的5 D0→7F2电偶极跃迁的红光发射,因此适合于解决白光LED缺乏红光成分而导致的显色性差问题.研究发现适量的W6+取代Mo6+,不但可以提高荧光粉的发光强度,而且有利于改善材料的色纯度.W6的最佳掺杂浓度为10at;.在395 nm激发下,NaY(Mo0.9W0.1O4)2∶Eu3+荧光粉的色度坐标为(0.666,0.331),优于传统商业红色荧光粉Y2O2S:Eu3+.  相似文献   

7.
本文通过PEG-400辅助水热合成了NaLa(WO4)2:Eu3+-Bi3+红色荧光粉,并且运用XRD、SEM、EDS、PL等测试手段对荧光粉体的结构、形貌、荧光性能进行了表征.实验结果表明:在pH=7.0~10.0范围内,可以制备出纯相的NaLa(WO4)2:Eu3+-Bi3+.当Eu3+的掺量达到5mol;,产品呈现为分散性较好的四方状微晶,粒径为5~6 μm.增加Bi3+的掺量,产物形貌向圆球状转变.在λex=396 nm的波长激发下,粉体发出强烈红光,此时的Eu3+位于NaLa(WO4)2晶体中非反演对称中心位置.当Bi3+的掺杂量为0.8mol;时,Eu3+的荧光强度提升了近4.2倍,持续增加Bi3+掺量,会出现浓度猝灭现象.不仅如此,关于铋离子桥:WO2-4 →Bi3+→Eu3+的级联能量传递机理也进行了探究.  相似文献   

8.
采用高温固相法制备纯相Y2( MoO4)3∶Dy3+荧光粉,并对其晶场及发光性质进行研究.晶场分析结果表明:Y3+格位晶场结构近似为对称性很低的C2,因此样品在近紫外区有很强f-f激发峰,适合于近紫外LED芯片.在387 nm激发下,主要发射峰为Dy3+的特征发射487 nm(蓝光,4F9/2→6H15/2)和574 nm(黄光,4F9/2→6H13/2).增大Dy3+掺杂浓度,黄光与蓝光的强度比值(Y/B)随之增大.387 nm激发下,不同Dy3+掺杂浓度荧光粉发射光的色坐标均在白光区域中.以上结果表明Y2( MoO4)3∶Dy3+是一种新型的适于近紫外LED芯片激发的白光荧光粉,发光性能良好.  相似文献   

9.
在不添加任何模板剂的情况下,采用温和水热法,制备了一系列NaGd0.96-x(WO4)2:0.04Tb3+,xEu3+(x=0,0.005,0.01,0.02,0.04,0.06,0.08,0.10,0.12,0.14,0.16,0.18)荧光粉.采用X射线粉末衍射仪(XRD)、扫描电子显微镜(SEM)以及荧光分光光度计分别对所得样品的物相结构、形貌粒度及发光性能进行分析表征.结果表明:所合成的样品为NaGd(WO4)2的纯相,属四方晶系白钨矿结构.其形貌为规整的四方盘形,尺寸均一、分散性良好.系列样品均能被近紫外光有效激发,通过改变NaGd(WO4)2中Eu3+/Tb3+的掺杂浓度,实现了对荧光粉发光颜色由绿色到红色的全色调控.  相似文献   

10.
采用水热法制备了Pr3+激活的MMoO4∶Pr3+(M=Sr,Ba,Ca)系列荧光粉,通过X射线衍射(XRD)、扫描电镜(SEM)及荧光光谱(PL)对该系列荧光粉的物相、形貌及发光性能进行了表征.结果表明:Pr3+的掺入没有改变荧光粉的主晶相,在450nm蓝光激发下,样品产生了红光发射,其中对应于Pr3+的特征跃迁3P0→3 F2位于647 nm的Ba9.98Pr0.02MoO4发射峰最强.MMoO4∶Pr3+ (M =Sr,Ba,Ca)红色荧光粉可以被蓝光LED有效激发产生红光,是一种优异的YAG∶ Ce3+黄色荧光粉的红光补偿粉.  相似文献   

11.
采用高温固相法制备了稀土离子Eu3+掺杂KBa2(NbO3)5(KBN)新型红色荧光粉,用X射线衍射谱(XRD)、扫描电镜(SEM)、荧光光谱(PL)对其晶体结构和发光性能进行了表征.XRD表明KBa2(NbO3)5的晶体结构没有随着Eu3+掺杂量的改变而改变,随着Eu3+掺杂量的增加,各衍射峰的位置向高衍射角偏移;SEM表明荧光粉样品晶体发育较好;荧光光谱表明Eu3+掺杂KBa2(NbO3)5荧光粉在398 nm有最强激发峰,发射光谱的最强峰随Eu3+浓度增加从593 nm(5 D0→7F1)变为613 nm(5D0→7F2).当Eu3+的掺杂摩尔分数x在0.1 ~0.5范围内时,发光强度和红光色纯度随着Eu3的浓度增加而增加,无浓度猝灭现象出现.  相似文献   

12.
系统研究了Ba2Mg(BO3)2∶Eu3荧光粉的高温固相法制备工艺条件,发现在900 ℃C下保温3h制得的样品的发光性能最好.研究了Eu3掺杂浓度对基质晶格环境和发光性质的影响,当Eu3+浓度较低时,荧光粉在594 nm的发射峰强度最大,随着Eu3掺杂浓度的增加,Eu3+偏离对称中心的程度越来越大,当Eu3浓度超过3at;时,荧光粉在613 nm的发射峰强度开始急剧增强,浓度达到3.5at;时,613 nm的发射开始占主导,这是由于晶体结构的扭曲程度导致晶格对称性发生了较大的改变,释放了更多禁戒的5 D0 →7F2电偶极跃迁.制备的橙色荧光粉可以被近紫外InGaN芯片有效激发,应用于白光LED.  相似文献   

13.
分别以乙二醇(EG)、丙三醇(Gly)、聚乙二醇-10000 (PEG-10000)和十二烷基磺酸钠(SDS)为表面活性剂,采用水热法制备了ZnWO4:Eu3纳米棒,通过X射线粉末衍射仪、红外光谱、扫描电子显微镜和荧光分光光度计等分析表征了样品的物相结构、形貌和发光性能.结果表明:ZnWO4∶Eu3红色荧光粉均为黑钨矿纯相;不同表面活性剂存在下所得样品颗粒基本呈短棒状,但长径比不同,Gly存在下所得棒状颗粒的长径比较小,粒度分布比较均匀,而以EG、PEG-10000和SDS为表面活性剂所得样品的长径比略大,粒度分布不均匀;ZnWO4∶Eu3+荧光粉的主峰位于616 nm处,归属于Eu3+的5D0→7F2电偶极跃迁;添加不同的表面活性剂对荧光粉的激发峰和发射峰的强度影响很大,其强度大小顺序为:IPEG-10000 >ISDS> IEG>IGly.  相似文献   

14.
以硝酸镧,氧化铕,硝酸锂,硝酸铋和偏钒酸铵为原料,采用简单的水热法合成了金属离子(Li~+,Bi~(3+))掺杂LaVO_4∶Eu~(3+)纳米荧光粉。通过XRD,SEM,FTIR,FL等手段进行表征。考察了金属离子(Li~+,Bi~(3+))摩尔掺杂浓度,反应温度,反应时间对LaVO_4∶Eu~(3+)荧光性能的影响,探讨合成Li~+,Bi~(3+)掺杂LaVO_4∶Eu~(3+)荧光粉的最佳条件。结果表明:所合成的产物以四方锆石结构(t-)LaVO_4纳米颗粒为主。Li~+,Bi~(3+)的掺杂,均能够提高荧光粉LaVO_4∶Eu~(3+)的发光强度;在180℃条件下反应24 h所得的LaVO_4∶5%Eu~(3+),4%Li~+,LaVO_4∶5%Eu~(3+),2%Bi~(3+)荧光粉荧光性能最佳。  相似文献   

15.
以二氧化锰为微波吸收剂,采用微波辐射法成功合成了CaMoO4∶Eu3+红色发光材料.用X射线粉末衍射仪、扫描电子显微镜、荧光分光光度计分别对样品的物相结构、形貌和发光性质进行了分析和表征.结果表明:所合成的CaMoO4∶Eu3+晶体结构与CaMoO4相似,属四方晶系结构;样品大颗粒呈立方形,尺寸约4~8 μm,是由200 ~ 300nm的类球形颗粒组装而成.样品的激发光谱由位于200 ~ 350 nm的一个宽带和350 ~ 500 nm的一系列尖峰组成,最大激发峰位于305 nm处;发射光谱由位于550 ~750 nm的一系列尖峰组成,最强的发射峰位于617 nm处,归属于Eu3+的5D0→7F2跃迁.当反应时间为40 min,微波功率为中高火,电荷补偿剂Li+的掺杂量为8mol;时,样品的发光强度最大,约为未掺杂电荷补偿剂样品的4倍.  相似文献   

16.
利用稀土离子Eu3+作为激活剂,采用溶胶燃烧法制备了Sr2.85(VO4)2∶0.1Eu3+红色荧光粉.用SEM、XRD和荧光光谱表征了荧光粉体的表面形貌、晶体结构和荧光性能.XRD分析和荧光光谱分析得出:最佳退火温度为950℃.该荧光粉在280 nm光下被高效激发,其最强发射峰位于618 nm处,对应于Eu3+的5D0到7F2的能级跃迁,表现出较强发射强度.设定发射波长为618 nm,得到荧光粉的激发光谱,其最强激发峰为280 nm处,说明该荧光粉可被紫外光有效激发.同时研究了Eu3+掺杂量和助燃剂柠檬酸对Sr2.85(VO4)2∶0.1Eu红色荧光粉发光性能的影响,得出Eu3+的最佳掺杂摩尔分数为0.1.助燃剂柠檬酸有利于形成主体基质,使荧光粉颗粒更分散,同时改善晶粒形貌,提高荧光粉的相对发光强度.  相似文献   

17.
以碳酸氢铵作为沉淀剂,分别以聚乙二醇-1000(PEG-1000)、十二烷基磺酸钠(DSASS)、十六烷基三甲基溴化铵( CTAB)、乙二醇(EG)为表面活性剂,采用水热法制得了棒状Gd2O3∶ Eu3+微晶.用XRD、SEM、荧光光谱仪等分别对样品的物相结构、微观形貌和发光性能进行了研究.结果表明:采用不同的表面活性剂所得前驱物经800℃下焙烧均得到了纯立方相的Gd2 O3∶Eu3+微晶,颗粒基本呈棒状,分散性较好,但长径比不同.以PEG-1000为表面活性剂所得样品尺寸不均一,尺寸分布范围较宽;以DSASS、CTAB、EG为表面活性剂所得样品直径较小、长度较短,且尺寸分布范围较窄.棒状Gd2O3∶Eu3+微晶主发射峰位置均在613 nm,属于5D0→7F2跃迁,呈红光发射;激发光谱中电荷迁移态发生了红移,主激发峰位于261nm.表面活性剂种类对发射峰和激发峰强度影响较大,由强到弱的顺序为:PEG-1000> DSASS> CTAB> EG.  相似文献   

18.
采用高温固相法制备了Eu3+掺杂的KMgLa(PO4)2荧光粉.采用X射线衍射技术及光谱技术研究了材料的晶相及发光特性.研究结果显示,少量的Eu3+并未影响KMgLa(PO4)2的晶相;以260 nm紫外光或394 nm近紫外光作为激发源时,KMgLa(PO4)2∶Eu3+都发射红色光,主发射峰位于595 nm,对应Eu3+的5 D0→7F2跃迁发射;随着Eu3+掺杂量的逐渐增大,对应KMgLa(PO4)2∶ Eu3+材料的发射强度随之增大,当掺杂量为0.06Eu3+时,发射强度最大,且存在浓度猝灭现象,对应的临界距离为1.696 nm;材料的CIE参数显示,材料位于红色区域.  相似文献   

19.
吴宪君  徐家跃  张彦 《人工晶体学报》2014,43(10):2611-2614
采用助熔剂固相合成法,合成了BaMgAl10O17∶Eu3+荧光粉,并分析了材料的光学性能,研究了助熔剂对合成温度、晶体结构和发光性能的影响.结果表明,制备的BaMgAl10O17∶Eu3+属于六方晶系.助熔剂固相法合成温度比传统高温固相法合成温度降低了300℃.BaMgAl10O17∶Eu3+荧光粉能被394 nm的紫外光有效激发,其发射主峰位于612 nm,属于占据非对称中心格位Eu3+的5D0→7F2的电偶极(ED)跃迁.在394 nm激发下,BaMgA110O17∶Eu3+荧光粉的色度坐标为(0.655,0.345),这说明助熔剂固相法合成的样品的色纯度较高,光色为橙红色.  相似文献   

20.
采用水热法在不同pH条件下制备出不同晶粒度GdVO4∶ Eu3+荧光粉.利用X射线衍射、扫描电镜和荧光光谱对GdVO4∶ Eu3+的结构、形貌和发光性能进行了研究.讨论了溶液的pH对晶粒尺寸的影响.结果表明:合成的样品均为单一的GdVO4四方晶相,纳米晶的一次性平均粒径分布在19~41 nm.反应溶液pH为6时,合成样品平均晶粒尺寸最小.激发带主要来自于V-O的电荷迁移带,发射光谱的主发射峰来自于5D0→7F2电偶极跃迁,不同pH值条件下制备的样品的电荷迁移带、发光强度、发射峰相对强度有所不同.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号