共查询到20条相似文献,搜索用时 22 毫秒
1.
InAs/GaAs量子点的生长形貌和特性受不同生长环境和生长条件影响.本文借助光致发光光谱(PL)特性表征方法,通过实验生长,对比研究不同生长温度下获得的量子点性能,结合当前三结叠层GaInP/GaAs/C-e(2-terminal)电池存在的问题,以及该电池的设计、制作要求,分析了InAs量子点的不同生长温度对于具有量子点结构的中电池吸收的影响. 相似文献
2.
3.
在InGaAs/GaAs表面量子点(SQDs)的GaAs势垒层中引入Si掺杂层,以研究Si掺杂对InGaAs/GaAs SQDs光学特性的影响。荧光发光谱(PL)测量结果显示,InGaAs/GaAs SQDs的发光强烈依赖于Si掺杂浓度。随着掺杂浓度的增加, SQDs的PL峰值位置先红移后蓝移; PL峰值能量与激光激发强度的立方根依赖关系由线性向非线性转变;通过组态交互作用方法发现SQDs的PL峰位蓝移减弱;时间分辨荧光光谱显示了从非线性衰减到线性衰减的转变。以上结果说明Si掺杂能够填充InGaAs SQDs的表面态,并且改变表面费米能级钉扎效应和SQDs的荧光辐射特性。本研究为深入理解与InGaAs SQDs的表面敏感特性关联的物理机制和载流子动力学过程,以及扩大InGaAs/GaAs SQDs传感器的应用提供了实验依据。 相似文献
4.
5.
采用热壁外延(Hot Wall Epitaxy,HWE)沉积系统在单晶Si(211)衬底表面制备了InAs薄膜,研究了不同生长温度(300℃、350℃、400℃、450℃和500℃)对薄膜材料结构及其电学性能的影响.通过X射线衍射(XRD)、扫描电子显微镜(SEM)、原子力显微镜(AFM)、霍尔(Hall)测试等,对InAs/Si(211)薄膜的晶体结构、表面形貌及电学参数进行了测试分析.结果表明:采用HWE技术在Si(211)衬底表面成功制备了InAs薄膜,薄膜具有闪锌矿结构并沿(111)方向择优生长.随着生长温度从300℃升高到500℃,全峰半高宽(FWHM)先减小后增大,生长温度为400℃时薄膜的晶粒尺寸最大为73.4 nm,载流子浓度达到1022 cm-3,霍尔迁移率数值约为102 cm2/(V·s),说明优化生长温度能够降低InAs薄膜的缺陷复合,使薄膜结晶质量和电学性能得到提高.SEM及AFM的测试结果显示由于较高的晶格失配及Si衬底斜切面(211)的特殊取向,在Si(211)衬底上生长的InAs薄膜主要为三维层加岛状(S-K)生长模式,表面粗糙度(Ra)随温度的升高先减小后增大,400℃时薄膜的平均表面粗糙度Ra为48.37 nm. 相似文献
6.
7.
固态源MBE系统生长高质量的调制掺杂GaAs结构材料和InP/InP外延材料的兼容性研究 总被引:1,自引:0,他引:1
通过固态源的分子束外延系统生长了调制掺杂AlGaAs/GaAs结构材料和InP/InP外延材料.在生长含磷材料之后,生长条件(真空状态)变差;我们通过采取合理的工艺方法和生长工艺条件的优化,获得了电子迁移率为1.86×105cm2/Vs(77K)调制掺杂AlGaAs/GaAs结构材料和电子迁移率为2.09×105cm2/Vs(77K)δ-Si掺杂AlGaAs/GaAs结构材料.InP/InP材料的电子迁移率为4.57×104 cm2/Vs(77K),该数值是目前国际报道最高迁移率值和最低的电子浓度的InP外延材料.成功地实现了在一个固态源分子束外延设备交替生长高质量的调制掺杂AlGaAs/GaAs结构材料和含磷材料. 相似文献
8.
本文利用高分辨率多重晶多重反射X射线衍射技术对分子束外延CdTe(211)B/ Si(211)与CdTe(211)B/GaAs(211)B材料的CdTe外延薄膜进行了倒易点二维扫描,并通过获得的倒易点二维图,对CdTe缓冲层的应力和应变状况进行了分析.研究显示,对于一定厚度的CdTe外延薄膜,在从生长温度280℃降至室温20℃的过程中,由于和衬底存在热膨胀系数的差异,将在外延薄膜中产生热应力,使外延薄膜发生应变,并且这种应变取代了失配应变,在晶格畸变中占据主导地位.对于Si衬底,热应变表现为张应力;对于GaAs衬底,热应变表现为压应力.该研究结果对于进一步优化在大失配的异质衬底上外延同Hg1-xCdxTe材料晶格匹配的Cd1-yZnyTe材料的Zn组分具有指导意义. 相似文献
9.
研究了分子束外延生长的覆盖了1nm的InxAl1-xAs(x=0.2,O.3)和3nm的Ino2Gao8As复合应力缓冲层InAs/GaAs自组织量子点(QD)光致发光(PL)特性.加InAlAs层后PL谱红移到1.33μm,室温下基态和第一激发态间的跃迁能级差增加到86meV.高In组份的InAlAs有利于获得较长波长和较窄的半高宽(FWHM).对于覆盖复合应力缓冲层的QD不会使波长和FWHM发生显著变化,但可以使基态和第一激发态间的能级差进一步增大.这些结果归因于InAlAs能够有效的抑制In的偏析,减少应力,使QD保持较高的高度.同时,由于InAlAs具有较高的限制势垒,可以增加基态和第一激发态间的能级差. 相似文献
10.
11.
12.
13.
采用外延生长法在低于 ZnS 晶体成核温度(120 ℃)的条件下,通过在ZnSe 量子点表面生长 ZnS,制备出结晶良好的 ZnSe/ZnS 核壳型量子点.通过 X 射线衍射(XRD),透射电镜分析(TEM)证实了核壳结构的生成.通过荧光光谱和紫外-可见光吸收光谱分析证实,核壳结构的形成改善了 ZnSe 量子点的荧光特性.通过改变反应温度、反应时间、反应物的用量等实验参数,可得到不同厚度ZnS壳层包覆的核壳型量子点.所制备的ZnSe/ZnS量子点具有良好的水溶性,可以分散形成稳定、澄清的水溶液.在紫外灯的照射下,溶液呈现明亮的蓝绿色荧光. 相似文献
14.
15.
通过对微晶硅太阳电池量子效率的测量,结合微区拉曼光谱和电学特性测试,讨论了本征层的硅烷浓度和等离子体辉光功率对太阳电池量子效率的影响.发现本征层硅烷浓度增加时,电池的长波响应变差,材料结构由微晶相演变成非晶相;等离子体辉光功率的增加造成了电池短波响应的变化.同时发现测量微晶硅太阳电池时使用掩膜板所得短路电流密度与量子效率积分获得的短路电流密度相差不大.将优化后的沉积参数应用于不锈钢柔性衬底的非晶硅/微晶硅叠层太阳电池,获得了9.28;(AM0,1353 W/m2)和11.26;(AM1.5,1000 W/m2)的光电转换效率. 相似文献
16.
用有限元法对InAs/GaAs量子点材料的应变分布进行了研究,特别强调了三元化合物In0.2Ga0.8As应变减少层对各个应变分量的影响。在应变减少层作用下沿着平行生长方向和垂直于生长方向的应变分量增强;对电子结构有重要影响的静水应变和双轴应变分量也得到了增强。采用八带k.p理论,研究了在有应变减少层的条件下,应变对带边的影响,计算结果表明,与没有应变减少层相比,应变导致带隙变窄,定性解释了实验观察到的发光波长红移现象。通过调整相关参数,可以采用应变减少层技术实现光纤通信系统用的长波长发射激光器。 相似文献
17.
18.
Ⅲ-Ⅴ化合物半导体外延单量子点具有类原子的分立能级结构,能够按需产生单光子和纠缠多光子态,而且可以直接与成熟的集成光子技术结合,因此被认为是制备高品质固态量子光源、构建可扩展性量子网络最有潜力的固态量子体系之一。本综述的重点是介绍高品质单量子点的分子束外延生长及精确调控的方法。首先介绍了晶圆级均匀单量子点的分子束外延生长,并探讨了调控浸润层态和量子点对称性的生长方法;接下来概述了利用应变层调控量子点发射波长的方法,总结了几种常见的电调控单个量子点器件的设计原理;最后讨论了最近为实现优异量子点光源而开发的液滴外延生长技术。 相似文献
19.
20.
量子光源是量子通信和光量子计算的基础模块。光子的单光子性保证了通信的无条件安全,光子的高不可分辨性保证了计算方案的复杂度。在各类固态材料候选体系中,基于半导体量子点体系的单光子源和纠缠光子源保持着量子光源品质的最高纪录,展现了巨大的潜力。分子束外延是目前最适合制备固态半导体量子点的生长方法,超高真空、超纯材料、原位监测和生长过程中参数的高度可控等特点使其优势明显。为了实现同时具备高效率、高单光子纯度、高不可分辨性和高纠缠保真度的量子光源,量子点的材料生长、外部调控、钝化技术和测量技术等都需要系统优化提升。本文将综述基于分子束外延生长实现固态量子点体系量子光源的基础材料与器件的研究进展,讨论两种常见量子点的制备原理以及外延生长中各类参数对量子点品质的影响,包括背景真空、源料纯度、衬底温度、生长速率和束流比等。本文随后简介了外部调控、表面钝化、测量技术等手段优化量子光源器件性能的技术细节和实验进展,最后对量子光源在基础科学研究和量子网络构建中取得的进展进行总结,并对其实际应用与发展前景进行展望。 相似文献