首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
2.
3.
Professional sports leagues are a major economic activity around the world. Teams and leagues do not want to waste their investments in players and structure in consequence of poor schedules of games. Game scheduling is a difficult task, involving several decision makers, different types of constraints, and multiple objectives to optimize. The traveling tournament problem abstracts certain types of sport timetabling issues, where the objective is to minimize the total distance traveled by the teams. In this work, we tackle the mirrored version of this problem. We first propose a fast and effective constructive algorithm. We also describe a new heuristic based on the combination of the GRASP and iterated local search metaheuristics. A strong neighborhood based on ejection chains is also proposed and leads to significant improvements in solution quality. Very good solutions are obtained for the mirrored problem, sometimes even better than those found by other approximate algorithms for the less constrained non-mirrored version. Computational results are shown for benchmark problems and for a large instance associated with the main division of the 2003 edition of the Brazilian soccer championship, involving 24 teams.  相似文献   

4.
《Journal of Graph Theory》2018,87(3):285-304
We initiate a general study of what we call orientation completion problems. For a fixed class of oriented graphs, the orientation completion problem asks whether a given partially oriented graph P can be completed to an oriented graph in by orienting the (nonoriented) edges in P. Orientation completion problems commonly generalize several existing problems including recognition of certain classes of graphs and digraphs as well as extending representations of certain geometrically representable graphs. We study orientation completion problems for various classes of oriented graphs, including k‐arc‐strong oriented graphs, k‐strong oriented graphs, quasi‐transitive‐oriented graphs, local tournaments, acyclic local tournaments, locally transitive tournaments, locally transitive local tournaments, in‐tournaments, and oriented graphs that have directed cycle factors. We show that the orientation completion problem for each of these classes is either polynomial time solvable or NP‐complete. We also show that some of the NP‐complete problems become polynomial time solvable when the input‐oriented graphs satisfy certain extra conditions. Our results imply that the representation extension problems for proper interval graphs and for proper circular arc graphs are polynomial time solvable. The latter generalizes a previous result.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号