首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Magnetically recoverable cobalt doping Fe3O4/TiO2 magnetic nanocomposites with an acceptable core–shell structure were prepared via a sol-gel process at low calcination temperature. The crystalline size and structure, morphology, and magnetic properties of resulting particles have been characterized by X-ray diffraction (XRD), fourier transform infrared (FT-IR), FT-Raman, high-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and vibrating sample magnetometry (VSM). Metoprolol tartrate (MET) as a pharmaceutical pollutant was used to observe the photocatalytic degradation ability of the magnetically recoverable particles. The process of degradation under UV irradiation at controlled temperature was studied and the remaining concentrations of MET as a contaminant were measured by UV-Vis spectrometer at λ = 229 nm. This ability remained 95.76% after three times of repetitive use at the same conditions. Various parameters such as reaction temperature, pH, and speed of stirring of the aqueous solution had an effect on the rate of degradation. The amount of cobalt dopant and nanocomposites are also effective on the rate of degradation. Coupling of electrical current with photocatalytic process has proven to be effective in the degradation of MET aqueous solution clearly.  相似文献   

2.
The early stages of crystallization for MgO-Al2O3-SiO2-TiO2-La2O3 glasses with different La2O3 concentrations were studied by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The glass transition temperature (Tg) of the glass decreases at first and then increases again with increasing La2O3 concentration. This indicates that the structure of the glass becomes weaker at first and then stronger again. Lanthanum acts in glasses as network modifier and will usually decrease the network connectivity of the glass structure. Nevertheless, if the La2O3 concentration is high enough, the oxygen and other ions start to agglomerate around La, resulting in a more closely packed structure. Heat-treatment of the sample with x = 0.1 at 770–810 °C results in the precipitation of a droplet phase with higher mean atomic weight embedded in a matrix with lower mean atomic weight. The initial crystalline phase magnesium aluminum titanate (MAT) precipitates from the droplet phase. Nevertheless, for the sample with x = 0.4, dendrite-like structure could be observed after heat-treatment of the glass at 810 °C. Furthermore, the crystalline phase first precipitated is the lanthanum containing perrierite, which could be attributed to the rearrangement of the glass structure as an effect of La3+ incorporation.  相似文献   

3.
The possibility of synthesizing perovskite-type LaMO3 (M = Mn, Co, Fe) oxides by microwave irradiation of crystalline hydrates of nitrates was studied. Oxides with the perovskite structure form at the microwave irradiation stage; however, the resulting product is not singe-phase. Additional thermal treatment of the microwave synthesis product at 600 to 900°C for 5 h is needed for a single-phase oxide to be formed in the case of M = Mn. In the case of M = Co or Fe, the samples contain considerable amounts of the simple oxides La2O3 and Fe2O3 or Co3O4 along with the perovskite. The synthesized products were investigated in nitrous oxide decomposition and methane oxidation as model reactions. As compared to the samples obtained by other techniques, they have a larger specific surface area and are more active.  相似文献   

4.
Lanthanum silicates nanoparticles with La9.33Si6O26 formula provided through sonochemical procedure in the presence of tetraethylenepentamine. The amine of tetraethylenepentamine plays two roles of alkaline agent and masking agent for controlling the morphology and size in the reaction process. Effect of sonication time and applying sonication method (non-stop or pulsed) as important parameters studied on the product characteristics. The obtained ideal sample applied as photocatalyst material for degradation of series of organic dyes. Also, dye concentration, catalyst dosage and pH are operational parameters in water treatment that choose to study in the designed photocatalytic tests. The photocatalytic degradation mechanism inquired to study the scavengers for active agents. Therefore, ideal efficiency (61.70%) obtained in the presence of 0.03 g La9.33 Si6 O26 nano-photocatalysts in 10 ppm acid red 14 in the pH of 11 which proceeds in terms of mechanism with the help of superoxide species.  相似文献   

5.
Ni-doped Mn3O4 nanoparticles (NPs) were synthesized by a simple one-pot microwave combustion procedure utilizing urea as a fuel. X-ray diffraction, transmission electron microscopy (TEM), diffuse reflectance spectroscopy, Photoluminescence spectra, and vibrating sample magnetometer. The particle size and the crystalline size measured from the HR-TEM monographs and XRD study suggest the similarity of the data collected from these two measurements. Photoluminescence (PL) spectra demonstrated increased luminescence amplitude with increased Ni concentration. Thus, the present study determines the time required for 4-nitrophenol yellow to colorless by Ni-doped Mn3O4 and Mn3O4 samples.  相似文献   

6.
TiO2, Cr2O3, ZrO2, and SnO2 films with thicknesses of ~10–100 nm were produced via dipping into solution and subsequent annealing in air. The films were studied by the methods of scanning electron microscopy, elemental X-ray spectral analysis, optical spectroscopy, and X-ray diffraction. The electrical conductivity of the films in air and in a vacuum was measured. The adhesion of most of the films to the substrate was found to be high. A crystalline structure was observed for films thicker than 10 nm. The films have a specific surface resistance of 108–1012 Ω in air and 109–1014 Ω in a vacuum. The films are promising as coatings for various purposes, including the development of structures of the core–shell type.  相似文献   

7.
Ferromagnetic glass–crystalline materials were produced by sintering of glasses from the systems Bi2O3B2O3MnO and crystalline phase La0.6Sr0.4MnO3. The appropriate preparation procedure was applied as follows: synthesis of the starting components, mixing, milling, pressing and sintering at selected temperatures. The steps of the technological scheme were controlled by X-ray diffraction and infrared spectroscopy. Small crystals with size in the order of 1–5 μm were detected by transmission electron microscopy observations [TEM] after heath treatment. The magnetic properties were studied by a vibrating sample magnetometer [VSM] and the Curie temperature was detected at 353 K. The presence of a narrow hysteresis loop proves the ferromagnetic properties of the materials.  相似文献   

8.
La6(BN3)O6, a Nitridoborate Oxide of Lanthanum Single‐crystals of La6(BN3)O6 were formed in reactions of Li3BN2, Li3N, and LaOCl at 950 °C. The structure was solved by single‐crystal X‐ray diffraction. La6(BN3)O6crystallizes with the space group Cmcm (no. 63) containing Z = 4 formula units in the unit cell, with lattice parameters of a = 366.88(3) pm, b = 2509.2(3) pm, and c = 1101.1(1) pm (R1 = 0.054, wR2 = 0.065 for all collected symmetry independant reflections). The crystal structure reflects typical patterns obtained in structures of nitridoborates. Tri‐nitridoborate ions are coordinated by La3+ ions in a tricapped trigonal prismatic arrangement, being stacked via shared trigonal faces to form columns. The arrangement of the columns in the structure provides space for O2— ions with CN = 4, 5, and 6.  相似文献   

9.
Developing cost-effective and more efficient nanocatalysts for the treatment of organic pollutants from process industry is always challenging for the researchers working in the field of chemistry, chemical, energy and environment engineering. In this work, a cost-effective and more efficient nanocatalysts, i.e., Nickel Cobaltite nanocomposites and its Lanthanum (La) doped derivatives with controlled surface morphology has been synthesized at 393.15 K through single step sol–gel method. The surface morphology, chemical composition, and crystal structure of the synthesized nanocomposites were analysed by scanning electron microscopy (SEM), Fourier transformed infrared spectroscopy (FTIR), and X-rays diffraction (XRD), respectively. The rough surface and well-crystallized metallic nanocomposites confirm the successful synthesis of nanocatalysts. The molar ratio of Lanthanum to Cobalt (Lax:Coy) showed a significant influence on the surface morphology and catalytic activity (Kapp = 0.15–0.47 min−1) of the products. Synthesized nanocomposites showed high catalytic activity for the reduction of methylene blue under solar irradiation. Photocatalytic results for the reduction of methylene blue show that the catalytic activity of synthesized nanocatalysts increases with the increase in the doping concentration of Lanthanum.  相似文献   

10.
ß‐Ga2O3 nanorod was first directly prepared by the microwave irradiation hydrothermal way without any subsequent heat treatments, and its characterizations were analyzed by X‐ray diffraction (XRD), scanning electron microscope (SEM), high‐resolution transmission electron microscope (HRTEM), UV–Vis diffuse reflection spectroscopy techniques, and also its photocatalytic degradation for perfluorooctanoic acid (PFOA) was investigated. XRD patterns revealed that ß‐Ga2O3 crystallization increased with the enhancement of microwave power and the adding of active carbon (AC). PFOA, as an environmental and persistent pollutant, is hard decomposed by hydroxyl radicals (HO·); however, it is facilely destroyed by ß‐Ga2O3 photocatalytic reaction in an anaerobic atmosphere. The important factors such as pH, ß‐Ga2O3 dosage and bubbling atmosphere were researched, and the degradation and defluorination was 98.8% and 56.2%, respectively. Reductive atmosphere reveals that photoinduced electron may be the major reactant for PFOA. Furthermore, the degradation kinetics for PFOA was simulated and constant and half‐life was calculated, respectively.  相似文献   

11.
In this work, magnesium ferrites nanoparticles (MgFe2O4 NPs) were successfully fabricated by sol-gel auto-combustion (SGAC) method and were used in heterogeneous Fenton-like degradation of tartrazine. The obtained products were characterized using XRD, FTIR, SEM and EDX. XRD studies confirmed that the synthesized MgFe2O4 NPs had a cubic spinel structure. The average crystallite size was evaluated using the Debyee Scherrer formula and found to be in the range 16.18–28.55 nm. In FTIR spectra, two primary absorption bands at 571 cm?1 and 415 cm?1 were observed. The spinel ferrites are characterized by these bands and the EDX confirms the presence of the desired elements Mg, Fe, and O. The influences of operating parameters were examined using the Box Behnken statistical design (BD), including magnesium ferrite dosage (0.04–0.12 g/L), tartrazine concentration (30–50 mg/L) and H2O2 concentration (3.53–7.06 mM). Using analysis of variance, a significant quadratic model was created. Optimum conditions were magnesium ferrite dosage of 0.092 g/L, tartrazine concentration of 30.21 mg/L and H2O2 concentration of 6.66 mM, respectively. The predicted degradation efficiency within the optimum conditions as established by the suggested model was 98.4%. Confirmatory tests were carried out and the degradation efficiency of 98.9% was observed, which was in good agreement with the model's prediction. After five recuperation and reapplications, the catalyst's degradation efficiency remains stable. These findings indicate that a heterogeneous Fenton-like process utilizing MgFe2O4 is effective in advanced wastewater treatment.  相似文献   

12.
The lithiated/delithiated vanadium pentoxide films deposited by sol‐gel spin coating on indium tin oxide–coated glass substrates were analyzed by sputter‐induced photon spectroscopy, X‐ray diffraction, and optical absorption techniques. First, it is shown that the crystalline structure of V2O5 after intercalation remains practically unchanged. Particularly, in the optical spectra during 5 keV Kr+ ion bombardment of clean, intercalated, and deintercalated V2O5 films, a series of sharp lines and unexpected continuum radiation were observed and well explained. It is also demonstrated that the intercalation and deintercalation of lithium have strong influences on various characteristics of pentoxide vanadium. The interpretations of the obtained results in the 3 experiments—X‐ray diffraction, sputter‐induced photon spectroscopy, and optical absorption techniques—are coherent and complement each other.  相似文献   

13.
Several Ti-incorporated Ga-oxide (Ga2O3) thin films with different amounts of Ti contents have been prepared by vacuum evaporation method on glass and silicon substrates. The Ti incorporation level was measured with energy dispersion X-ray spectroscopy (EDX) method. The crystalline structure of the prepared films was determined with X-ray diffraction method. Experimental data indicate that Ti4+ ions doped in host Ga2O3 form solid solutions (SS) even with so large Ti% content ∼10.4% wt. All the prepared solid solutions have the known orthorhombic (ɛ-phase) phase of Ga2O3. The doping controls the optical and electrical properties of the host Ga2O3. It was found that the bandgap of the prepared undoped Ga oxide is 5.23 eV, which was decreased monotonically with increasing of Ti doping level so that it is possible to engineer the bandgap. Furthermore, the electrical measurements show that with Ti doping, it is possible to turn the high-k Ga oxide into low-k dielectric material. The optical sensitivity of the capacitance, dissipation factor, and ac-conductance of the Ga2O3:Ti films grown on Si was studied as a function of Ti-doping level. It was observed that the prepared Ga2O3:Ti film with 6–10% doping level has the highest photosensitivity among the other samples.  相似文献   

14.
Amorphous lanthanum carbonate was prepared by hydrolysis of lanthanum isopropoxide using ammonia water in the atmosphere. Lanthanum monoxocarbonate, La2O(CO3)2 · H2O, crystallizes when this amorphous material was washed with hot water. The crystallization and thermal behavior of the crystalline material are studied by X-ray diffraction, thermal analysis, and infrared spectroscopy. The decomposition of La2O(CO3)2 · H2O into type-IA (LaO)2CO3 is observed at 440 to 540°C. Decomposition isotherms are described by the contracting cube equation, the activation energy being 42.6 kcal mol?1. Type-IA (LaO)2CO3 subsequently decomposes to A-type La2O3 at 750 to 870°C. The kinetics is also interpreted in terms of the contracting cube equation, the activation energy being 58.3 kcal mol?1.  相似文献   

15.
Cetyltrimethyl ammonium bromide (CTAB) was used in a sol-gel route to synthesize porous lanthanum titanate. The materials are composed of perovskite La2Ti2O7 in monoclinic system. The addition of CTAB does not cause phase transformation, but leads to a slight decreasing tendency of La2Ti2O7 crystallite size. Both the pore volume and pore size distribution range are enlarged after using CTAB. The sample obtained with 4 g CTAB has the maximum BET specific surface area of 42.4 m2/g. When the amount of CTAB is less than 4 g, the increase in photocatalytic degradation efficiency is almost in linear relationship to the amount of CTAB. The reaction rate constants are 0.0032, 0.0116 and 0.0237 min−1 on the La2Ti2O7 samples obtained using 0, 2 and 4 g CTAB. The functional groups in azophloxine molecule are decomposed during photocatalytic oxidation with extending irradiation time.  相似文献   

16.
This study mainly focuses on the synthesis of two allotropes of graphene, graphene oxide (GO) and reduced graphene oxide (rGO), by the modified Hummers' method and chemical reduction method, respectively. Sm2O3/GO and Sm2O3/rGO nanocomposites were further synthesized in the presence of the cationic surfactant CTAB via the sol–gel method followed by the reflux method. Synthesized nanocomposites were subjected to characterization by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and UV–Visible spectroscopy to explore structural, thermal, optical, and photocatalytic properties. Characteristic FTIR peaks were observed in nanocomposites, and the bond length of the Sm-O bond was calculated. The Coats-Redfern method was employed to calculate the kinetics and thermodynamic parameters. Hexagonal crystallite shapes of Sm2O3/GO and Sm2O3/rGO nanocomposites with 11.8 and 13.13 nm crystallite sizes and 3.9 and 2.5 eV optical band gaps were observed. The photocatalytic efficiency of Sm2O3/GO and Sm2O3/rGO nanocomposites was assessed against the degradation of methylene blue in the presence of sunlight, and its degradation was confirmed through FTIR. The antimicrobial activities were also performed against the bacterial strains Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus.  相似文献   

17.
Various nanosized zinc aluminate(ZnAl2O4) samples were prepared by a conventional and a mi- crowave method both with and without using Opuntia dilenii haw plant extract,and were charac- terized by X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FT-IR),high resolution scanning electron microscopy(HRSEM),energy dispersion scanning(EDX),temperature dependent conductance measurements, thermoelectric power measurements, ultraviolet-visible (UV-Vis) diffuse reflectance spectroscopy,and photoluminescence spectroscopy.The formation of a pure ZnAl2O4 phase was confirmed by XRD and FT-IR.A change in morphology from nanosized plates to nanosized sheets with,respectively,the conventional and microwave heating methods was clearly shown by HRSEM.UV-Vis diffusion reflectance spectroscopy measured the band gaps of ZnAl2O4 nanosized plates and nanosized sheets as 3.5 and 3.9 eV,respectively.The synthesized ZnAl2O4 was single crystalline and has three photoluminescence emissions at 482,528,and 540 nm.ZnAl2O4 nanosized sheets prepared by the microwave method showed higher catalytic activity for the oxida- tion of benzyl alcohol(85% conversion) than ZnAl2O4 nanosized plates prepared by the convention- al method(60% conversion).  相似文献   

18.
Doping of inorganic ion-exchange material tin silicate with zirconium ion by sol-gel technique was conducted for the production of a novel ion-exchanger. Undoped and doped tin silicate has been characterized by elemental analysis (X-ray fluorescence), Fourier transform infrared spectroscopy (FT-IR), thermal analysis and X-ray diffraction studies. The structures of two ion-exchangers were identified and the empirical formulas found as SnSi2O6·6H2O and SnZr4Si4O12·16H2O for tin silicate and zirconium doped tin silicate, respectively. The effect of zirconium ion concentration of the doped tin silicate on the crystalline size and strain of tin silicate was investigated. The probable structure of both materials was assessed by the ChemDraw Ultra program. Finally, application of these materials for the treatment of radionuclides in terms of capacity measurements was investigated.  相似文献   

19.
Perovskite-oxide nanocrystals of La0.75Sr0.25Cr0.93Ru0.07O3-δ with a mean size around 10 nm were prepared by microwave flash synthesis. This reaction was performed in alcoholic solution using metallic salts, sodium ethoxide and microwave autoclave. The obtained powder was characterised after purification by energy dispersive X-ray analysis (EDX), X-ray powder diffraction (XRD), BET adsorption technique, photon correlation spectroscopy (PCS) and transmission electron microscopy (TEM). The results show that integrated perovskite-type phase and uniform particle size were obtained in the microwave treated samples. At last the synthesised powder was directly used in a sintering process. A porous solid, in accordance with the expected applications, was then obtained at low sintering temperature (1000 °C) without use of pore forming agent.  相似文献   

20.
The isothermal and cyclic oxidizing kinetics of Co-40Cr alloy and its lanthanum ion-implanted samples were studied at 1000℃ in air by thermal-gravity analysis (TGA). Scanning electronic microscopy (SEM) and transmission electronic microscopy (TEM)) were used to examine the oxidized film's morphology and the structure after oxidation. Secondary ion mass spectrum (SIMS) method was used to examine the binding energy change of chromium caused by La-doping and its in?uence on formation of Cr2O3 film. Laser Raman spectrum was used to examine the tress changes within oxidized films. It was found that lanthanum implantation remarkably reduced the isothermal oxidizing rate of Co-40Cr and improved the anti-cracking and anti-spalling properties of Cr2O3 film. The reasons were that the implanted lanthanum reduced the grain size and internal stress of Cr2O3 oxide, increased the high temperature plasticity of oxidized film. Lanthanum mainly existed in the outer surface of Cr2O3 film in the forms of fine La2O3 and LaCrO3 spinel particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号