首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Artificial zeolite deactivated after repeated utilization and the properties compromised formed disused zeolite. In the past, disused artificial zeolite landfilled after incineration and results in environmental pollution and resource waste. This work synthesized a new type of a new metakaolin-based geopolymer prepared by using disused artificial zeolite and metakaolin. The influence of disused artificial zeolite on the performance and pore structure of the final products was investigated. The bulk density and compressive strength of the samples were approximate 457 kg/m3 and 1.3 MPa, respectively. Moreover, disused artificial zeolite has good mesoporosity and strong foaming performance. The incorporation of disused artificial zeolite generated more pores with smaller diameters and pronounced pore grading, adjust the pore structure of the samples, forming multiscale pore structured structures. This study described one application method of disused artificial zeolite in geopolymers, synthesized a new metakaolin-based geopolymer, which is significant for exploring the potential utilization value of disused artificial zeolite.  相似文献   

2.
Biodegradable ?4 mm tubular porous poly(ε-caprolactone)/poly(L-lactide-co-ε-caprolactone) (PCL/PLCL) scaffolds are fabricated successfully via one-step microcellular supercritical carbon dioxide foaming process. The effect of blending ratio on the rheology, pore structures, mechanical property, wettability, and biocompatibility of PCL/PLCL blends tubular scaffold are reported. Rheological results show that PCL matrix and PLCL dispersed phase has good compatibility. The melt strength of PCL can be enhanced obviously by adding PLCL. With an increase of PLCL content from 10 to 30 wt%, the pore size increases from 7.6 to 24.9 μm due to the homogeneous nucleation effect. The maximum open-cell content can reach 77% for PCL/PLCL foamed sample. Cyclical tensile and compliance tests show that few content of dispersed PLCL (10–20 wt%) improves the flexibility and recoverability. Cell viability results demonstrate that human umbilical vein endothelial cells (HUVECs) cultured on all PCL/PLCL porous scaffolds exhibit a typical spindle-like cell morphology. Moreover, HUVECs have a higher density and spreading areas on surface of 10% PLCL scaffold. The results gathered in this paper may open a new perspective for the fabrication of small-diameter vascular tissue engineering scaffold.  相似文献   

3.
《Solid State Sciences》2012,14(7):903-913
Some physical properties of the cubic perovskites CsXF3 (X = Ca, Sr and Hg) have been investigated using pseudopotential plane-wave method based on the density functional theory. The calculated lattice parameters within GGA and LDA agree reasonably with the available experimental data. The elastic constants and their pressure derivatives are predicted using the static finite strain technique. We derived the bulk and shear moduli, Young's modulus, Poisson's ratio and Lamé’s constants for ideal polycrystalline aggregates. The analysis of B/G ratio indicates that CsXF3 (X = Ca, Sr and Hg) are ductile materials. The thermal effect on the volume, bulk modulus, heat capacity and Debye temperature was predicted.  相似文献   

4.
The effect of iron acetylacetonate on the physico-chemical properties of waterglass based silica aerogels by ambient pressure drying has been investigated. Doping the gels with iron acetylacetonat (FeAA) facilitates in the diminution of the density of the aerogels. The well established silica network provides effective confinement of FeAA nanoparticles which resists the collapse of silica network during ambient pressure drying. Therefore, in the present paper, the effects of FeAA on the physico-chemical properties of the aerogels have been studied by varying the FeAA:Na2SiO3 molar ratio from 3 × 10−4 to 6 × 10−4. The aerogels were prepared via ambient pressure drying and characterized by the bulk density, thermal conductivity and water contact angle. The aerogel’s surface morphology, elemental analysis and pore structure were characterized by means of EDAX and FTIR, TEM and N2 adsorption- desorption analyzer. The high temperature hydrophobicity of these aerogels was checked by heating them in temperature controlled furnace. Silica aerogels with low density ~0.050 g/cc have been obtained using the molar ratio of Na2SiO3:H2O:FeAA:Citric acid:TMCS at 1:146.67:3 × 10−4:0.54:9.46, respectively. EDAX and FTIR studies show that the iron species are entrapped in the mesoporous framework and not took part in the bonding with silica.  相似文献   

5.
Jiakun Zhuang  Long Ma  Yinghua Qiu 《Electrophoresis》2022,43(23-24):2428-2435
As an important property of porous membranes, the surface charge property determines many ionic behaviors of nanopores, such as ionic conductance and selectivity. Based on the dependence of electric double layers on bulk concentrations, ionic conductance through nanopores at high and low concentrations is governed by the bulk conductance and surface charge density, respectively. Here, through the investigation of ionic conductance inside track-etched single polyethylene terephthalate (PET) nanopores under various concentrations, the surface charge density of PET membranes is extracted as ∼−0.021 C/m2 at pH 10 over measurements with 40 PET nanopores. Simulations show that surface roughness can cause underestimation in surface charge density due to the inhibited electroosmotic flow. Then, the averaged pore size and porosity of track-etched multipore PET membranes are characterized by the developed ionic conductance method. Through coupled theoretical predictions in ionic conductance under high and low concentrations, the averaged pore size and porosity of porous membranes can be obtained simultaneously. Our method provides a simple and precise way to characterize the pore size and porosity of multipore membranes, especially for those with sub-100 nm pores and low porosities.  相似文献   

6.
In the present paper, we report the synthesis of tetrapropoxysilane (TPOS)-based silica aerogels with high surface area and large pore volume. The silica aerogels were prepared by a two-step sol-gel process followed by surface modification via a simple ambient pressure drying approach. In order to minimize drying shrinkage and obtain hydrophobic aerogels, the surface of the alcogels was modified using trichloromethylsilane as a silylating agent. The effect of the sol-gel compositional parameters on the polymerization of aerogels prepared by TPOS, one of the precursors belonging to the Si(OR)4 family, was reported for the first time. The oxalic acid and NH4OH concentrations were adjusted to achieve good-quality aerogels with high surface area, low density, and high transparency. Controlling the hydrolysis and condensation reactions of the TPOS precursor turned out to be the most important factor to determine the pore characteristics of the aerogel. Highly transparent aerogels with high specific surface area (938 m2/g) and low density (0.047 g/cm3) could be obtained using an optimized TPOS/MeOH molar ratio with appropriate concentrations of oxalic acid and NH4OH.  相似文献   

7.
The effect of an external electric field on the flux in crossflow membrane filtration of a model oily waste water was studied using a carbon fibre – carbon composite membrane as a cathode. Limiting fluxes for low flow rate increased significantly under the conditions studied, from 75 l/m2 h without an electric field to more than 350 l/m2 h using an electric field. The experimentally determined increase in the limiting flux showed good agreement with the theoretical value of 430 l/m2 h calculated using a simple model. The limiting flux increase was affected by the electrophoretic mobility of the oil droplets and the applied electric field strength. When there were no cakes without an electric field due to the high flow rate, the flux increase when using an electric field under at the same conditions was minor. The critical electric field strength was determined, and experimentally obtained values were corresponded with calculated values. Decreasing the crossflow velocity above the critical electric field strength increased the flux, or had no effect, depending on the size of the particles. Permeate quality was also improved to some extent when using the electric field, and a membrane with a large pore size could be used when an electric field was applied. The main disadvantage in using the membrane as a cathode was foaming at the membrane surface causing decrease in the flux enhancement as the conductivity of the feed increased. It was not possible to restore the flux to the original value by applying an electric field after filtration of the oil emulsion without an electric field. An intermittent electric field was thus not efficient enough for keeping the flux at high level.  相似文献   

8.
Because of containing urea groups, flame resistance and smoke releasing behaviors of isocyanate-based polyimide foam (IBPIF) produced using free foaming technology require further improvement. In this work, silica aerogel layers were incorporated into cells of IBPIF through an in situ growth process of silica sol (SS). Compared with silica aerogel particles directly mixed into the foaming slurry, the silica aerogel layers that firmly attached to the pores and surfaces of cells not only provided exceptional thermal insulation and flame protection, but also kept original cellular structure. With increase in ratio of SS mass to IBPIF volume, silica aerogel incorporation dosage was gradually increased. Accompanied by flame resistance was obviously improved and smoke releasing behavior was effectively suppressed. Those were indicated by the improved limiting oxygen index (LOI), decreased heat release rate (HRR), peak of HRR, and specific optical density of smoke (Ds) in trials with pilot flames. Compared with pure IBPIF, when the ratio reached to 5/15 g/cm3, it resulted in LOI increasing from 22.0% to 33.0%, peak of HRR, total smoke production (TSP), and maximum value of Ds decreasing from 174 to 72 kW/m2, 1.11 to 0.37 m2/m2, 45.90 to 17.45, respectively.  相似文献   

9.
Shrinkage and pore structure in preparation of carbon aerogels   总被引:1,自引:0,他引:1  
To aim at thermal insulator applications, the shrinkage and the pore structure of resorcinol–formaldehyde (RF) aerogels and carbon aerogels were investigated during the supercritical drying and the carbonization process. The water (W) molar ratio has small effects on the surface area or the particle size, but has significant effects on the density of the aerogel. Higher W/R ratio leads to lower density and larger pore size, and leads to less shrinkage during the carbonization process. The molar ratio of catalyst sodium carbonate (C) has significant effects on the shrinkage, pore size, and particle size of the aerogel. Lower R/C ratio leads to smaller particle size and smaller pore size, and thus induces more shrinkage both in the supercritical drying and in the carbonization, the obtained CA is much denser. The R/C ratio should be higher than 300 to prevent excessive shrinkage. In order to synthesize carbon aerogels combining with small shrinkage, low density (less than 0.1 g/cm3), and small pore size (less than 150 nm) for thermal insulators, the preferred W/R ratio is between 90 and 100, and the preferred R/C ratio is between 300 and 600.  相似文献   

10.
《先进技术聚合物》2018,29(3):1117-1122
Investigation of the effect of electron radiation and foaming agent on some properties of poly(butylene adipate‐co‐terephthalate) (PBAT) was the aim of the present paper. The mass flow rate, weight‐average molecular weight of irradiated PBAT as well as the morphological structure of foamed samples, their density, tensile strength, and specific strength were determined. It was found that irradiation of PBAT induces growth in weight‐average molecular weight and decrease in mass flow rate, and as a consequence of this increase in viscosity of this polymer. It was also found that foaming of irradiated PBAT causes formation of homogeneous cellular structure or structure with a clear separation of large and small cells. Simultaneously, the irradiated and foamed PBAT shows smaller density than that of non‐irradiated and foamed PBAT. Moreover, electron radiation does not influence tensile strength of the foamed PBAT; however, it increases its specific strength, although only if the content of foaming agent is 1 wt%.  相似文献   

11.
Tissue engineering scaffolds should provide a suitable porous structure and proper mechanical strength, which is beneficial for the delivery of growth factor and regulation of cells. In this study, the open‐porous polycaprolactone (PCL)/poly (lactic acid) (PLA) tissue engineering scaffolds with suitable porous scale were fabricated using different ratios of PCL/PLA blends. At the same time, the relationship of foaming process, morphology, and mechanical behavior in the optimized batch microcellular foaming process were studied based on the single‐factor experiment method. The porous structures and mechanical strength of the scaffolds were optimized by adjusting foaming parameters, including the temperature, pressure, and CO2 dissolution time. The results indicated that the foaming parameters influence the cell morphology, further determine the mechanical behavior of PCL/PLA blends. When the PCL content is high, with the increase of temperature and time, the cell diameter and the elastic modulus increased, and the tensile strength and elastic modulus increased with the increase of the average cell size, and decreased as the increase of the cell density. While when the PLA content was high, the cell diameter showed the same trend, and the tensile strength and elastic modulus were higher, and the elongation at break was lower, and tensile strength and elastic modulus decreased with the increase of the average cell size and increased with the increase of cell density. This work successfully fabricated optimized porous PCL/PLA scaffolds with excellent suitable mechanical properties, pore sizes, and high interconnectivity, indicating the effectiveness of modulating the batch foaming process parameters.  相似文献   

12.
Experimental results on the physico-chemical properties of ambiently dried sodium silicate based aerogels catalyzed with various acids are reported. The aerogels were prepared by hydrolysis and polycondensation of sodium silicate followed by subsequent washings, surface chemical modification and ambient pressure drying using 10 various acid catalysts consisting of strong and weak acids. The strength and concentration of acids have the major effect on the gelation of sol and hence the physico-chemical properties of the silica aerogels. Strong acids such as HCl, HNO3 and H2SO4 resulted in shrunk (70–95%) aerogels whereas weak acids such as citric and tartaric acids resulted in less shrunk (34–50%) aerogels. The physical properties of silica aerogels were studied by measuring bulk density, volume shrinkage (%), porosity (%), pore volume, thermal conductivity, contact angle with water, Transmission Electron Microscopy (TEM), Atomic Absorption Spectroscopy (AAS), Fourier Transform Infrared Spectroscopy (FTIR), Thermo Gravimetric-Differential Thermal (TG-DT) analyses and N2 adsorption–desorption BET surface analyzer. The best quality silica aerogels in terms of low density (0.086 g/cm3), low volume shrinkage (34%), high porosity (95%), low thermal conductivity (0.09 W/m K) and hydrophobic (148°) were obtained for molar ratio of Na2SiO3:H2O:citric acid:TMCS at 1:146.67:0.72:9.46 with 20 min gelation time. The resulting aerogels exhibited the thermal stability up to around 420 °C.  相似文献   

13.
制备不同活性金属原子比的体相催化剂,通过BET、XRD、SEM、TEM、强度测定、堆积密度测定及小型活性评价手段,考察了活性金属钨、钼、镍含量的变化对体相催化剂物化性质和活性的影响。结果表明,保持W/Mo原子比不变,随着(W+Mo)/Ni的原子比减小,孔体积、比表面积、孔径增大,超深度加氢脱硫活性增强,在精制油硫含量小于10μg/g,反应温度降低8℃。在(W+Mo)/Ni的原子比不变的条件下,W/Mo的原子比在0.28-1.85,随着原子比增大,孔体积、比表面积、超深度加氢脱硫活性没有明显变化。  相似文献   

14.
Adsorption characteristics of chloroform from its aqueous solution on Na–Y and Li–Na–Y modified by SiCl4 were measured and compared with those on Na–ZSM-5 and Na-Mordenite.No adsorption occurred on Na–Y with high hydrophilicity, while the siliceous faujasites became capable of adsorption and its amount increased with increase in the Si/A1 ratio. Adsorption isotherms are of Langmuir type, suggesting that adsorption proceeds by pore filling. The adsorption amounts expressed in volume on Na–Y with high hydrophobicity corresponded to their pore volumes.Adsorption characteristics of chloroform from gaseous phase on Na–Y with different Si/A1 ratio were also measured. The adsorption capability decreased with increasing Si/A1 ratio.Immersional heats of zeolites into water or chloroform were measured in order to evaluate the surface affinity to both solvents. Immersional heats into water were almost constant (about 500 mJ·m–2) for zeolites with their Si/A1 ratio below 10. The heats decreased with an increase in the Si/A1 ratio above 10, then became almost constant (about 120 mJ·m–2) over 30 in their ratio. Heats of immersion of Na–Y series into chloroform were almost constant irrespective of their Si/A1 ratio, but decreased slightly when the ratio exceeded 20.Adsorption characteristics of chloroform could be well related to immersional heats into both solvents.  相似文献   

15.
This study dedicates to foaming of biocompatible blends of polylactic acid and thermoplastic polyurethane reinforced with bio-degradable cellulose nanofibers. This research primarily was associated with fabrication of PLA-TPU nanocomposites using a low weight fraction of cellulose nanofibers as a biodegradable reinforcement. Microstructural and mechanical properties of fabricated nanocomposites were examined and diffractometry was utilized to verify formation of percolated nanocomposites. Microcellular foaming was then performed with CO2 as a blowing agent. Central composite design was applied in designing the experiments to evaluate the effects of main operating variables consisting of saturation pressure and time, heating time and foaming temperature. The results demonstrated that high saturation pressure and time promoted low cell diameters (below 5 μm) and high cell densities (above 109 cell/cm3) due to the grown degree of crystallinity and higher PLA-TPU miscibility. Accordingly, adding TPU and CNF to the matrix create high crystalline foamed samples decorated with low bulk density.  相似文献   

16.
Spectroscopic studies (1H, 23Na and 27Al MAS NMR and Raman spectroscopy) have been used to characterize three series of C-S-H samples (0.8<Ca/Si<1.7): one C-S-H series, one aluminum inserted C-S-H series (named C-A-S-H series), and one sodium and aluminum inserted C-S-H series (named C-N-A-S-H series). Previous Rietveld analyses have been performed on the two first series and have clearly shown that (1) a unique ‘tobermorite M defect’ structural model allows to describe the C-S-H structure whatever the Ca/Si ratio and (2) the insertion of aluminum into the C-S-H structure led to the degradation of the crystallinity and to a systematic increase of the basal spacing of about 2 Å regardless the Ca/(Si+Al) ratio (at a constant Al/Si ratio of 0.1). Spectroscopic investigations indicate that the main part of the Al atoms is readily incorporated into the interlayer region of the C-S-H structure. Al atoms are mainly inserted as four-fold coordinated aluminates in the dreierketten silicate chain (either in bridging or paired tetrahedra) at low Ca/Si ratio. Four-fold aluminates are progressively replaced by six-fold coordinated aluminates located into the interlayer region of the C-S-H structure and bonded to silicate chains. Investigation of the hydrogen bonding in C-S-H indicates that the main part of the hydrogen bonds is intra-main layer, and thus explains the low stacking cohesion of the C-S-H structure leading to its nanometric crystal size and the OD character of the tobermorite like structures.  相似文献   

17.
Organic polymers can be made porous via continuous or discontinuous expansion processes in scCO2. The resulting foams properties are controlled by the interplay of three groups of parameters: (i) Chemical, (ii) physico-chemical, and (iii) technological/process that are explained in this paper. The advantages and drawbacks of continuous (extrusion, injection foaming) or discontinuous (batch foaming) foaming processes in scCO2, will be discussed in this article; especially for micro or nano cellular polymers. Indeed, a challenge is to reduce both specific mass (e.g., ρ < 100 kg·m−3) and cell size (e.g., average pore diameter ϕaveragepores < 100 nm). Then a particular system where small “objects” (coreshells CS, block copolymer MAM) are perfectly dispersed at a micrometric to nanometric scale in poly(methyl methacrylate) (PMMA) will be presented. Such “additives”, considered as foaming aids, are aimed at “regulating” the foaming and lowering the pore size and/or density of PMMA based foams. Differences between these additives will be shown. Finally, in a PMMA/20 wt% MAM blend, via a quasi one-step batch foaming, a “porous to nonporous” transition is observed in thick samples. A lower limit of pore size (around 50 nm) seems to arise.  相似文献   

18.
Increased recombinant protein expression yields and a large installed base of manufacturing facilities designed for smaller bulk sizes has led to the need for high capacity chromatographic resins. This work explores the impact of three pore sizes (with dextran distribution coefficients of 0.4, 0.53, and 0.64), dextran surface extender concentration (11–20 mg/mL), and ligand density (77–138 μmol H+/mL resin) of cation exchange resins on the dynamic binding capacity of a therapeutic antibody. An intermediate optimal pore size was identified from three pore sizes examined. Increasing ligand density was shown to increase the critical ionic strength, while increasing dextran content increased dynamic binding capacity mainly at the optimal pore size and lower conductivities. Dynamic binding capacity as high as 200 mg/mL was obtained at the optimum pore size and dextran content.  相似文献   

19.
Water exchange between bulk water and water-ion complexes will be at equilibrium when the charge density of the complex surface equals the charge density of bulk water, producing a constant radius water-ion complex. This complex will migrate in an electric field at a velocity proportional to the complex radius. CE velocity is the sum of the complex charge-dependent velocity and the buffer electro-osmotic flow. Simultaneous use of both a base (1.07 mM imidazole) and an acid (1.5 mM MOPS) buffer negates EOF at pH 7.4. Electric fields below 300 V/cm (potassium, calcium) and 400 V/cm (magnesium) yield migration velocities with no dehydration of the water-ion complexes. The number of waters per complex increase with the ion charge density: K+ 1.90, Ca++ 5.90, Mg++ 6.59 waters/ion. The charge densities of the complexes are similar: K+ 1.24, Ca++ 1.43, Mg++ 1.21 e/nm2, for an average bulk water charge density of 1.29 ± 0.11 (SD) e/nm2. The addition of 0.1% Triton increases the number of waters for Mg++ to 25.33 and lowers the charge density to 0.497 e/nm2. High electric field dehydration shows that calcium will be fully dehydrated at 638.3 V/cm and magnesium fully dehydrated at 925.5 V/cm, which occur at 6.15 and 5.78 nm from the membrane. Dehydrated magnesium will then bind to calcium channels leading to decreased smooth muscle activation.  相似文献   

20.
Influence of lanthanum stearate (LaSt3) as a co-stabilizer on stabilization efficiency of calcium stearate (Ca)/zinc glutarate (Zn) stabilizers to polyvinyl chloride (PVC) at 180 °C in air was investigated. The results showed that combination of LaSt3 with Ca/Zn stabilizers presented an obvious improvement of stabilization efficiency to PVC compared with the Ca/Zn stabilizers. Moreover, addition of LaSt3 to the Ca/Zn stabilizers could significantly enhance static stability time of PVC. Incorporation of 2 phr LaSt3 co-stabilizer to PVC containing 3 phr Ca/Zn stabilizers resulted in marked increase of onset degradation temperature and reductions in average degradation rate as well as the dynamic storage modulus (G′) and loss modulus (G″) at 180 °C. Influence of Ca/Zn ratio on tensile strength of PVC in the absence or in the presence of LaSt3 was discussed in detail. At low Ca/Zn ratios LaSt3 had an obvious improvement in the tensile strength, while at high Ca/Zn ratios this effect became inconspicuous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号