首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
In this work, FeNbO4 powders were prepared using the sol-gel method. The fine powder particles were pressed into pellets and sintered at temperatures between 500 and 1200 °C. The powder was studied by X-ray diffraction and Raman spectroscopy. The morphology of the grains was investigated by scanning electron microscopy. Heat-treatment of the particles results in higher crystallinity, larger grains, and a decrease in the porosity of the material.The dielectric properties were measured in the frequency range of 102–106 Hz, in function of temperature (200–370 K). In all samples the real (ε′) and imaginary (ε″) parts of the complex permittivity increase with increasing annealing temperature. The sample heat treated at 1200 °C shows the highest ε′, > 104 at 300 K. All samples show a dielectric relaxation phenomenon, analysed using the modulus formalism. The evolution of the ac conduction activation energy and of the activation energy associated with the relaxation mechanism, is directly related with the changes promoted by the heat treatment in the structure and in the morphology of the base powders.  相似文献   

2.
The Na3Nb4As3O19 compound is synthesized by solid state reaction method and characterized by X-ray diffraction. The structure is described as a three-dimensional anionic framework having two kinds of tunnels where sodium cations are located. The framework of the title compound is thus of open character and the motion of sodium cations through the tunnels seems to be feasible. This factor led us to study the ionic conduction. In this work, we present the dielectric and electrical properties of Na3Nb4As3O19 compound by using the complex impedance spectroscopy technique, in the frequency range 0.01 – 13000 kHz. The conductivity measurements of the obtained ceramic are studied over a temperature range from 300 to 620 °C. The real and imaginary parts of the dielectric constant were found to decrease with frequency and to increase with temperature. The values of the frequency of the maximum of the imaginary part of the modulus and of the impedance are different indicating a non-Debye type of relaxation process. The values of the activation energy (Ea) calculated by different methods are in conformity. The Bond Valence Sum (BVS) model is used to identify the conduction pathways for the monovalent cations, allowing a better correlation between the electrical and the structural data. It suggests that the most probable sodium conduction pathway is along c-direction.  相似文献   

3.
Perovskite types Sr(Sm0.5Nb0.5)O3, (SSN) ceramics have been prepared through solid state reaction route. The scanning electron microscopy provides information on the quality of the samples and uniform grain distribution over the surface of the samples. The field dependence of the dielectric response was measured in a frequency range from 50 Hz to 1 MHz and in a temperature range from 60 °C to 420 °C indicates polydispersive nature of the materials. An analysis of the dielectric constant (?′) and tangent loss (tanδ) with frequency is performed assuming a distribution of relaxation times as confirmed by the scaling behavior of electric modulus spectra. The frequency dependence of the electric modulus peak is found to obey Arrhenius law with activation energy of ∼0.026 eV. The complex plane impedance plot shows the grain boundary contribution for higher value of dielectric constant in the law frequency region. The frequency dependence of electrical data is also analyzed in the framework of conductivity and electric modulus formalisms. Both these formalisms show qualitative similarities in relaxation times. The scaling behavior of imaginary part of electric modulus M″ suggests that the relaxation describes the same mechanism at various temperatures in SSN.  相似文献   

4.
In the current communication, structural, microstructural, dielectric, relaxor, impedance, AC conductivity, and electrical modulus characteristics of double perovskite Gd2NiMnO6 (synthesized by a solid state reaction route) as a function of temperature (25–125 °C) and frequency (1 kHz–1MHz) have mainly been reported. From preliminary X-ray structural analysis, it is found that the crystal structure of the material is monoclinic. In temperature dependence of dielectric constant analysis, relaxor behaviour of the material was observed. Such type of behaviour is described by modified Curie–Weiss law and a Vogel–Fulcher law. From Nyquist plots, the existence of grain and grain boundary effect in the material is observed. The non–Debye type of relaxation is confirmed from the complex impedance spectroscopy. From the impedance data, the determined grain resistance reduces with increment of temperature showing negative temperature co-efficient of resistance (NTCR)-type nature of the material which also confirmed from conductivity analysis. Again, non-Debye type of relaxation phenomena is observed from the analysis of modulus spectroscopy which is also proved by complex impedance plot. From these result it may be concluded that this material may be used for different high temperature applications.  相似文献   

5.
In this work, the free-standing plasticized solid polymer electrolyte films were made utilizing methylcellulose (MC) and dextran (DN) doped with ammonium fluoride (NH4F) and plasticized with glycerol by a typical solution casting approach. Based on the characterizations, MC-DN-NH4F electrolyte has been shown to improve the structural, electrical, and electrochemical properties resulting from the dispersion of glycerol plasticizer. The electrochemical impedance spectroscopy (EIS) measurement for the highest inclusion of plasticizer revealed a conductivity of 2.25 × 10-3 S/cm. The electrical equivalent circuit (EEC) model has established the circuit elements for each electrolyte. The variation trend of dielectric constant and DC conductivity was matched and confirmed by the EIS data. The fourier transform infrared (FTIR) analysis displayed credible confirmation of polymers-ion-plasticizer interactions. The dielectric study is extra highlighted the conductivity behavior. The dielectric constant and loss (ε′ and ε″) quantities were reported to be high at low frequencies. On the other hand, the irregular shape of the imaginary part of modulus (M“) spectra denotes the non-Debye behaviors of relaxation. The ion transference number (tion) value for the maximum plasticized system is 0.944, where the ions are the primary components for the charge transfer process. Stability of the highest conducting sample is determined to be 1.6 V, using linear sweep voltammetry (LSV).  相似文献   

6.
Dielectric spectroscopy was evaluated as a condition monitoring technique for aged polyethylene electrical insulation in nuclear power plants. Bare core insulations of crosslinked polyethylene were aged at 55 and 85 °C under exposure to 60Co γ-radiation at different dose rates (0.42, 0.76 and 1.06 kGy h−1) to different total doses. The samples were studied by dielectric spectroscopy and tensile testing, and the crystallinity, mass fraction of soluble component and density were determined. The oxidation profiles along the depth of the insulations were assessed by infrared microscopy. The aged samples showed an increase in both the real and imaginary parts of the dielectric permittivity over the whole frequency range studied, an increase in the mass fraction of soluble component and in the material density, and a decrease in the strain-at-break. The imaginary part of the dielectric permittivity at 100 kHz increased in a linear fashion with increasing material density, the latter being strictly related to the extent of oxidation of the material according to infrared spectroscopy and differential scanning calorimetry. The generic relationship between the imaginary part of the permittivity and the density included all the data obtained under different ageing conditions. The results suggest that dielectric spectroscopy can be used for in-situ measurements of the degree of oxidation of polyethylene cables, in order to obtain information about the condition of the cable insulation to enable the remaining lifetime to be predicted.  相似文献   

7.
A new double perovskite oxide holmium magnesium zirconate Ho2MgZrO6 (HMZ) was prepared by solid state reaction technique. The crystal structure has been determined by powder X-ray diffraction which shows monoclinic phase at room temperature with cell parameters a = 9.3028 ± 0.0030 Å, b = 5.2293 ± 0.0008 Å, c = 4.4009 ± 0.0009 Å, β = 103.3746 ± 0.0166°. An analysis of complex permittivity with frequency was carried out assuming a distribution of relaxation times. The frequency dependent electrical data are analyzed in the framework of conductivity and electric modulus formalisms. At the high temperature range, conductivity data satisfy the variable range hopping (VRH) model. In this regime, the conductivity of sample obeys Mott’s T1/4 law, characteristic of VRH. High temperature data indicates the formation of thermally activated small polarons. The scaling behaviour of imaginary part of electric modulus suggests that the relaxation describes the same mechanism at various temperatures.  相似文献   

8.
《印度化学会志》2022,99(11):100772
The incorporation of transition metal oxide fillers into the polymer matrix through solution mixing polymerization imparts enhanced electrical and thermal properties. The present work focused on the optical properties, crystallinity, thermal stability, temperature-dependent conductivity, dielectric constant and modulus of chlorinated polyethylene/copper alumina (CPE/Cu–Al2O3) nanocomposites. Optical absorption measured using an ultraviolet–visible (UV–visible) spectrometer shows enhanced intensity and a blue shift for CPE/Cu–Al2O3 nanocomposites. The bandgap energy of CPE/Cu–Al2O3 nanocomposites was lower than pure CPE and minimum bandgap energy was recorded for a 7 wt% composites. The X-ray diffraction demonstrates that Cu–Al2O3 nanoparticles were uniformly introduced into the CPE matrix. Thermogravimetric analysis (TGA) manifests improved thermal stability of nanocomposites. Dielectric properties decrease with frequency, whereas AC conductivity increases with frequency, and both AC conductivity and dielectric properties increase with temperature. The maximum AC conductivity and dielectric constant were obtained for 7 wt % nanofiller loaded sample. For all systems, the activation energy for electrical conductivity decreases with rising temperatures. The experimental dielectric constant values of CPE nanocomposites were correlated with different theoretical models. The Bruggeman model was in good agreement with the experimental permittivity. The impedance experiments showed a decreasing trend with temperature, indicating the semiconducting nature of prepared nanocomposites.  相似文献   

9.
The effect of 60Co (γ-ray) irradiation on the electrical and dielectric properties of Au/Polyvinyl Alcohol (Ni,Zn-doped)/n-Si Schottky barrier diodes (SBDs) has been investigated by using capacitance-voltage (C-V) and conductance-voltage (G/ω-V) measurements at room temperature and 1 MHz. The real capacitance and conductance values were obtained by eliminating series resistance (Rs) effect in the measured capacitance (Cm) and conductance (Gm) values through correction. The experimental values of the dielectric constant ′), dielectric loss ″), loss tangent (tanδ), ac electrical conductivity (σac) and the real (M′) and imaginary (M″) parts of the electrical modulus were found to be strong functions of radiation and applied bias voltage, especially in the depletion and accumulation regions. In addition, the density distribution of interface states (Nss) profile was obtained using the high-low frequency capacitance (CHF-CLF) method for before and after irradiation. The Nss-V plots give two distinct peaks for both cases, namely before radiation and after radiation, and those peaks correspond to two different localized interface states regions at M/S interface. The changes in the dielectric properties in the depletion and accumulation regions stem especially from the restructuring and reordering of the charges at interface states and surface polarization whereas those in the accumulation region are caused by series resistance effect.  相似文献   

10.
In this paper, we have investigated relaxation mechanisms and dielectric characteristics of an Sr0.61−xBa0.39Nb2O6Cex (abbreviated as SBN61 and x=0.0066) single crystal with dielectric spectroscopy measurements. The crystal undergoes a ferroelectric phase transition at 340 K. The temperature dependence of the real and imaginary part of the complex dielectric susceptibility in the vicinity of ferroelectric–paraelectric phase transition has been studied in the frequency region 100 Hz–10 mHz. The measurement of the dielectric constants of the real and imaginary parts shows strong frequency dependence. The investigations of the dielectric constant using Cole–Cole plots revealed a non-Debye-type dielectric relaxation for Ce+3-doped SBN61. It reveals the coexistence of the two dielectric relaxators in the vicinity of the phase transition.  相似文献   

11.
A double perovskite oxide Ba2FeSbO6 was hydrothermally synthesized and structurally characterized by X-ray diffraction. This solid compound shows a single phase and has a trigonal structure with space group R m and cell parameters of a=0.57261 nm and c=1.40244 nm. The dielectric constant and loss tangent of the solid measured in a frequency range from 100 Hz to 1 MHz at temperatures from 313 K to 513 K reveal a relaxation process of frequency dependence of the real part(ε') of dielectric constant and dielectric loss tand. The frequency dependence of electrical property led to the framework of conductivity and electric modulus formalisms. The scaling behavior of imaginary part of electric modulus suggests that the relaxation describes the single mechanism at various temperatures. The variation tendency of the alternating current impedance indicates the thermally activated conduction process follows Jonsche’s power law.  相似文献   

12.
Dielectric and conducting properties of Tb1−xAlxMnO3 (x = 0, 0.05) synthesized by the solid–state reaction method have been investigated. The Al ion has the same valence as substituted Tb but is nonmagnetic and its small size gives rise to microstructural strain which affects the multiferroic properties of the parent compound. Samples were characterized by means of complex impedance spectroscopy (CIS) in the frequency range from 40 Hz to 5 MHz, at temperatures above room temperature. The conductivity curves for the two samples are well fitted by the Jonscher law σ(ω) = σdc + n. Results of the fitting procedure indicate that for the studied samples, the hopping motion involves localized hopping without the species leaving the neighbors. Frequency dependence of the dielectric constant (ε″) and tangent loss (tan δ) display a dispersive behavior at low frequencies that can be explained on the basis of the Maxwell–Wagner model and Koop's theory. The relaxation dynamics of charge carriers has been studied by means of the electric modulus formalism. In turn, the variation of the imaginary part of the complex impedance, Z″, shows a peak at a relaxation angular frequency (ωr) related to the relaxation time (τ) by τ = 1r. The complex impedance spectra (Nyquist plots) show well-defined semicircles which are strongly dependent on the Al-doping level and temperature. The complex impedance data have been modeled using electrical equivalent circuits.  相似文献   

13.
《先进技术聚合物》2018,29(7):1974-1987
The ac‐impedance of bulk‐like films of pure polyethylene oxide (PEO) polymer was measured as a function of frequency f in the range 0.1 to 107 Hz at various constant temperatures T (155 − 330 K ). The as‐measured data were analyzed by electric permittivity and modulus formalisms to unveil which dielectric and conductive relaxation processes were responsible for their relaxation behavior below/above glass transition temperature Tg of pure PEO polymer. At T > Tg , none of the α ‐, β ‐, or γ ‐relaxations could be inferred for studied pure PEO films from frequency variation of measured imaginary part ε′′(f, T) of complex dielectric permittivity , as low‐frequency losses masked real dielectric contribution to the measured ε′′(f, T) at low frequencies and high temperatures. However, at T < Tg , a broad, relaxation process has been observed in the high‐frequency part of their isothermal ε′′(f, T) − f spectra, which can be related to the β ‐ or γ ‐dielectric relaxation process. Nonlinear regressions of the measured ε′′(f, T) − f data for T < Tg yielded moral fits to a simple addition of a Havriliak‐Negami function, and a Bergman‐loss Kohlrausch‐Williams‐Watts‐type function, with the relaxation time τmax(T) obtained from Havriliak‐Negami‐fitting parameters, was found to follow a thermally activated Arrhenius‐like relaxation behavior. Conversely, representation of the imaginary part M′′(f, T > Tg) − f spectra of complex electric modulus was found to depict 2 overlapped relaxation processes, which were detached well by a nonlinear regression of a simple superposition of 2 different M′′(f)  expressions having the form of the universal Bergman loss function, where it was found that the relaxation time is also thermally activated.  相似文献   

14.
《印度化学会志》2023,100(2):100901
The novel calcium titanate-lithium lanthanum titanate doped with zinc oxide (0.10, 0.30, and 0.50 mol. %) ceramic samples were prepared by solid-state reaction route. The phase formation, microstructure, densification, and microwave dielectric properties were investigated. It was found that the doping with zinc oxide led to a decrease in sintering temperature by 25 oC as compared with pure calcium titanate lithium lanthanum titanate due to the liquid phase effect. Also, the calcium titanate lithium lanthanum titanate (10ZCTLLT&30ZCTLLT)) doped with lower zinc oxide (0.10 and 0.30 mol. %) led to higher densification parameter. This was followed by increasing the zinc oxide doping up to (0.50 mol. %) which resulted in a decrease in densification and microwave dielectric properties which may be attributed to increase in porosity and grain growth upon the evaporation of zinc and oxygen vacancy. This led to the increase in dielectric loss (≈10 × 10?4) value with 50ZCTLLT. Hence, the best result of microwave dielectric characteristics was obtained for 0.5CaTiO3–0.5(Li0.5La0.5)TiO3 with (0.10 and 0.30 mol. % ZnO) 10ZCTLLT and 30ZCTLLT ceramic samples sintered at 1175 oC/2h, with low dielectric constant (εr) = 4.4–10.5, very low dielectric loss = 1.07-2.23 × 10?4 and high quality factor (Q x ?) ≈59-55 × 104 at 8 GHz. Consequently, they can be used not only in wireless satellite communications technology but also can be used in the fifth-generation telecommunication 5G technology construction.  相似文献   

15.
The glasses within composition as: (80 − x)V2O5/20Bi2O3/xBaTiO3 with x = 2.5, 5, 7.5 and 10 mol% have been prepared. The glass transition (Tg) increases with increasing BaTiO3 content. Synthesized glasses ceramic containing BaTi4O9, Ba3TiV4O15 nanoparticles of the order of 25–35 nm and 30–46 nm, respectively were estimated using XRD. The dielectric properties over wide ranges of frequencies and temperatures were investigated as a function of BaTiO3 content by impedance spectroscopy measurements. The hopping frequency, ωh, dielectric constant, ε′, activation energies for the DC conduction, Eσ, the relaxation process, Ec, and stretched exponential parameter β of the glasses samples have been estimated. The, ωh, β, decrease from 51.63 to 0.31 × 106 (s−1), 0.84 to 0.79 with increasing BaTiO3 respectively. Otherwise, the Eσ, increase from 0.279 to 0.306 eV with increasing BaTiO3. The value of dielectric constant equal 9.5·103 for the 2.5BaTiO3/77.5V2O5/20Bi2O3 glasses-ceramic at 330 K for 1 KHz which is ten times larger than that of same glasses composition. Finally the relaxation properties of the investigated glasses are presented in the electric modulus formalism, where the relaxation time and the respective activation energy were determined.  相似文献   

16.
17.
Nano-sized La1/2Nd1/2FeO3 (LNF) powder is synthesized by the sol–gel citrate method. The Rietveld refinement of the X-ray diffraction profile of the sample at room temperature (303 K) shows the orthorhombic phase with Pbnm symmetry. The particle size is obtained by transmission electron microscope. The antiferromagnetic nature of the sample is explained using zero field cooled and field cooled magnetisation and the corresponding hysteresis loop. A signature of weak ferromagnetic phase is observed in LNF at low temperature which is explained on the basis of spin glass like behaviour of surface spins. The dielectric relaxation of the sample has been investigated using impedance spectroscopy in the frequency range from 42 Hz to 1 MHz and in the temperature range from 303 K to 513 K. The Cole–Cole model is used to analyse the dielectric relaxation of LNF. The frequency dependent conductivity spectra follow the power law. The magneto capacitance measurement of the sample confirms its multiferroic behaviour.  相似文献   

18.
The dc and ac electrical conductivity of barium tellurite borate glass doped with Nd2O3 in the composition 50 B2O3- (20-X) BaO- 20TeO2 10 LiF or Li2O where x = 0.5, 1, 1.5 and 2 Nd2O3 were measured in the temperature range 303–648 K and in the frequency range 0.1–100 kHz. The dc and ac conductivities values increase, whereas the activation energy of conductivities decreases with increasing Nd2O3 content in the glasses containing LiF and by the replacement of LiF by Li2O the conductivity was found to decrease with addition of Nd2O3. The electrical conduction has been observed to be due to small polaron hopping at high temperatures. The frequency dependence of the ac conductivity follows the power law σAC (ω) = A ωs. The frequency exponent (s) values (in the range 0.94 and 0.33) decreases with increasing temperature. The dielectric constant and dielectric loss increased with increasing temperature and decreased with increase in frequency for all glasses studied. In LiF glasses, it is observed that, the values of ?\ and tan δ are observed to increase with the addition of Nd2O3 whereas they decrease in the glasses containing Li2O. The electrical modulus formalism has been used for studying electrical relaxation behavior in studied glasses. It is for first time that the Nd2O3 doped barium tellurite borate glasses have been investigated for dc and ac conductivities and dielectric properties over a wide range of frequency and temperature.  相似文献   

19.
The Aurivillius phase-based composition bearing chemical formula Bi4Pb2Zr2TiFeNbO18 (termed as BPZTFNO) was synthesized by a solid-state method. The structural analysis as obtained from the X-ray pattern has depicted an orthorhombic phase. The various size and morphology of grains are distributed throughout the natural surface as revealed from microstructure analysis. The dielectric and electrical study of the BPZTFNO is taken at a various sweep of frequency (1 kHz–1 MHz) and temperatures (25–400 °C). The ferroelectric-paraelectric phase transition is well illustrated from the temperature-dependent dielectric constant. The complex impedance analysis suggests the association of grain effect. The relaxation of non-Debye nature is shown in the impedance study. The formed sample is subjected to an electric field and further its excitation performance is examined suggesting its possible usage in devices.  相似文献   

20.
Microwave radiation emitted at a frequency of 915 MHz and 5.8 GHz from a newly fabricated single-mode resonance microwave apparatus is herein proposed for use in microwave-assisted organic syntheses. The usefulness of 5.8-GHz microwaves is demonstrated by the solvent-free synthesis of 2-allylphenol through a Claisen rearrangement process, and by the synthesis of the C12–C2–C12 Gemini surfactant in ethanol solvent undertaken to verify the usefulness of the 915-MHz frequency. These two model reactions have shown the advantage of these two microwave frequencies in that the observed efficiencies were greater than when employing the more commonly used 2.45-GHz microwaves. Dielectric parameters (dissipation factor: tan δ, dielectric constant: ε′, and dielectric loss: ε′′) have also been assessed for water and 22 common organic solvents typically used in organic syntheses, together with the temperature dependence of the dielectric parameters. Temperature–time profiles have been determined and rates of increase of temperature computed. The 5.8-GHz microwaves were effective in heating non-polar solvents, while the 915-MHz microwave frequency was most suitable for heating the alcohols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号