首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《印度化学会志》2023,100(2):100913
Owing to contribution of thermo-diffusion phenomenon in various engineering and industrial frame works, scientists have presented some exclusive investigations on this topic. In current research, the thermos-diffusion prospective of second grade material accounted by a moving cylinder have been predicted. The applications of Soret and Dufour effects based on the thermos-diffusion phenomenon is evaluated. The magnetic force and viscous dissipation effects are presented for the current flow model. Additionally, the improvement in thermal transport of viscoelastic fluid is suggested with radiative phenomenon. The convective boundary constraints are used to report the thermos-diffusion phenomenon. The system based on dimensionless form is obtained with interaction of new variables. The shooting technique is used for numerical observations by using MATLAB software. The physical impact of phenomenon in view of parameters is graphically attributed. It has been noted that increasing velocity profile is results due to curvature parameter and viscoelastic parameter. The enhancement in thermal profile is noted due to Dufour number and Eckert number.  相似文献   

2.
The interest of researchers towards the nanofluids is noticed in recent years due to leading applications in thermal systems and industrial framework. Referring to such motivations, current study explores the role of velocity slip effects for the mixed convection flow of nanofluid endorsed due to inclined surface. The Casson base fluid model for which the thermal impact needs to be improved. The analysis is observed when the role of velocity slip is important. The modeling of unsteady free convective flow problem yields partial differential system. The Atangana-Baleanu (AB) and Caputo-Fabrizio (CF) fractional operators are implemented in order to simulates the computation of problem. The graphical presentations are prepared in order to check the physical dynamic of parameters.  相似文献   

3.
《印度化学会志》2023,100(1):100819
The phenomenon of bioconvection in nanomaterials presents novel applications in the biotechnology, biofuels, enzymes, biomedical engineering and energy systems. Current exploration explores the applications of bioconvection in Homann flow of nanofluid due to spiraling of disk theoretically. The generalized model namely tangent hyperbolic fluid is used to predicts the rheological and thermal impact. The stability of nanofluid is ensured with interaction of motile microorganisms. The Boungrino nanofluid model with thermophoresis and Brownian motion features is used to perform the analysis The thermal distribution of nanofluids is proceeded by utilizing the zero mass thermal constraints. The similarity variables are introduced in order to estimating the dimensionless formulation. The Keller Box method with higher efficiency is imposed with implicit finite difference numerical algorithm. The main observations reveal that with enhancing the radial velocity and azimuthal velocity decreases with increasing sparling angle. For highly viscous case, a decrement in the azimuthal velocity has been observed.  相似文献   

4.
《印度化学会志》2023,100(1):100825
The improved thermal association of heat transfer is considerably observed due to interaction of nanoparticles in recent days. The lubrication phenomenon with heat and mass transfer effects plays a key role in the hydraulic systems. In current research, the thermal impact of nanofluid over a lubricated stretching surfaces near a stagnation point analytical has been studied. A thin layer of lubricating fluid with a variable thickness provides lubrication. The inspection of thermophoresis and Brownian motion phenomenon is illustrated via Boungrino model. The analytical finding of refurbished boundary layer ordinary differential equations is obtained by a reliable and proficient technique namely variational iteration method (VIM). The Lagrange Multiplier is a potent tool in proposed technique to reduce the computational work. In addition, a numerical comparison is presented to show the effectiveness of this study. The range of flow parameters is based on theoretical flow assumptions. Physical inspection of involved parameters on velocities, temperatures, concentrations, and other quantities of interest when lubrication is presented. The current results present applications in polymer process, manufacturing systems, heat transfer and hydraulic systems.  相似文献   

5.
《印度化学会志》2023,100(1):100837
The heat transfer phenomenon subject to thermos-diffusion effects convey important applications in the heating processes, extrusion systems, chemical processes and various engineering systems. The objective of current work is to observe the contribution of Soret and Dufour effects in oscillating shield for cross diffusion flow. The perpendicular shield with oscillating motion induced the flow. The magnitude of oscillations is assumed to be small so that laminar flow due to oscillating shield has been resulted. The motivations for addressing the thermos-diffusion phenomenon due to oscillating of shield are due to applications in oscillatory pumps, moving surface, metal detectors, power systems etc. The dimensionless problem is obtained via introducing the appropriate set of variables. The numerical outcomes are suggested by using the most interesting explicit finite difference scheme. The physical illustration for flow parameters is presented. Moreover, the aspect of physical quantities involving the flow are graphically reported.  相似文献   

6.
Transport of salt through the wall of porous microtube is relevant in various physiological microcirculation systems. Transport phenomena based modeling of such system is undertaken in the present study considering a combined driving force consisting of pressure gradient and external electric field. Transport of salt is modeled in two domains, in the flow conduit and in the pores of porous wall of the microtube. The solute transport in the microtube is presented by convective‐diffusive mass balance and it is solved using integral method under the framework of boundary layer analysis. The wall of the microtube is considered to be consisting of series of straight parallel cylindrical pores with charged inner surface. The solute transport through the pores is considered to be composed of diffusive, convective and electric potential gradient governed by Nernst‐Planck equation. Transport in the microtube and pores is coupled through the osmotic pressure model for the solvent and Donnan equilibrium distribution for the solute. The simulated results agree remarkably well with the experimental data conducted by in‐house experimental set up. The charge density of the porous wall is estimated through the minimization of errors involved between the experimental and simulated data for different operating conditions.  相似文献   

7.
Viscous incompressible liquid flow in a long cylindrical capillary, the internal surface of which is covered with a permeable porous layer, is studied within the frameworks of three mathematical models. In the first model, the liquid flow in the porous layer is described by the Brinkman equation; according to the second one, the presence of the porous layer is taken into account using the Navier slip boundary conditions; and, in the third model, the Navier condition is imposed on the porous layer-liquid interface, with the flow inside the porous layer being excluded. The theoretical predictions are compared with the experimental data that one of us has obtained for liquid flow rates in porous capillaries. The validity and appropriateness of the application of the proposed models are discussed.  相似文献   

8.
The purpose of this study is to investigate non-Darcian mixed convection flow, heat and mass transfer in a non-Newtonian power-law fluid over a flat plate embedded in porous medium with suction and viscous dissipation and also is to demonstrate the application and utility of a recently developed multi-domain bivariate spectral quasi-linearisation method (MD-BSQLM) in finding the solutions of highly nonlinear differential equations. The flow is subject to, among other source terms, internal heat generation, thermal radiation and partial velocity slip. The coupled system of nonlinear partial differential equations are solved using a MD-BSQLM to find the fluid properties, the skin friction, as well as the heat and mass coefficients. We have presented selected results that give the significance of some system parameters on the fluid properties. This MD-BSQLM has not been used before in the literature to find the nature of the solutions of power-law fluids. Indeed, validation of this numerical method for general fluid flows, heat and mass transfer problems has not yet been done. This study presents the first opportunity to evaluate the accuracy and robustness of the MD-BSQLM in finding solutions of non-Newtonian fluids.  相似文献   

9.
10.
Capillary-gravity waves of permanent form at the interface between two unbounded magnetic fluids in porous media are investigated. The system is influenced by the horizontal direction of the magnetic field to the separation face of two semi-infinite homogeneous and incompressible fluids, so that the fields allow free-surface currents at the interface. The solutions of the linearized equations of motion under nonlinear boundary conditions lead to derivation of a nonlinear equation governing the interfacial displacement. This equation is accomplished by using the cubic nonlinearity. Taylor theory is used to expand the governing nonlinear equation in the light of the multiple scales in both space and time. The perturbation analysis leads to imposition of two levels of solvability conditions, which are used to construct the well-known nonlinear Ginzburg-Landau equation. The stability criteria are discussed theoretically and numerically and stability diagrams are obtained. Regions of stability and instability are identified for the surface current density. It is found that the stabilizing role for the magnetic field is retarded when the flow is in porous media. Moreover, the increase in the values of resistance parameters plays a dual role, in stability behavior and in the increase in surface current density.  相似文献   

11.

The object of this study is to analyze the impact of heterogeneous and homogeneous reactions on the flow, heat and mass transfer analysis of Maxwell nanofluid of Tiwari–Das kind over a stretched cylinder by considering convective boundary condition and velocity slip. Ethylene glycol (Eg) is used as base fluid; while gold (Au) and silver (Ag) are taken as nanoparticles. The governing equations represent nanofluid momentum, and energy and mass are reduced to system of nonlinear ordinary differential equations by utilizing similarity transformation procedure and are numerically evaluated by using finite element method. The sway of several pertinent parameters on the sketches of velocity, temperature and concentration is plotted through graphs. In addition to that the values of rate of heat transfer and skin-friction coefficient are calculated and presented through tables. The values of skin-friction coefficient are intensified as the values of homogeneous–heterogeneous reaction parameters rises. The velocity and concentration scatterings are both declines as the strength of Maxwell parameter raises.

  相似文献   

12.
Macroporous polystyrene/divinylbenzene (PS‐DVB) monoliths were obtained using highly concentrated W/O emulsions as templates. These monoliths are of interest due to the high potential applications for catalysis, scaffolds for tissue engineering, filters, membranes, or drug delivery systems. Dynamic wetting behavior through the polymer monolith is directly related to contact angle. For this reason, in this paper we investigate the relationship between contact angle, morphology, and chemical composition of the dense skin layer and the highly porous interior surface of PS‐DVB porous monoliths. Whereas the dense skin layer exhibits a Wenzel regime using water as wetting liquid, the highly porous interior surface exhibits a Cassie–Baxter regime. This behavior is correlated with the roughness observed by scanning electron microscopy (SEM). However, the observed contact angle hysteresis seems to indicate that factors other than surface roughness should be taken into account. For this reason, chemical composition was also studied by elemental microanalysis and X‐ray photoelectron spectroscopy (XPS). The differences in chemical composition observed between the dense skin layer and the highly porous interior surface, according to the wetting model for a heterogeneous surface proposed by Johnson and Dettre, seems also to contribute to the wetting hysteresis. The different wetting between the dense skin layer and the highly porous interior surface results in a dual wettability phenomenon, in which a liquid wets the dense skin layer and does not penetrate into the highly porous interior of the PS‐DVB monoliths. This phenomenon can be of relevance in absorption or desorption processes such as in drug delivery processes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
This work illustrates the appearance and electrohydrodynamic consequences of concentration polarization in the particulate and monolithic fixed beds used in capillary electrochromatography and related electrical-field assisted processes. Key property of most porous materials is the co-existence of bulk, quasi-electroneutral macroporous regions and mesoporous compartments which are ion-permselective (due to electrical double-layer overlap) causing different transport numbers for co-ionic and counterionic species, e.g., background electrolyte components, or the analytes. For a cathodic electroosmotic flow the (cation) permselectivity, together with diffusive and electrokinetic transport induces depleted and enriched concentration polarization zones at the anodic and cathodic interfaces, respectively, in dependence of the mobile phase ionic strength and applied electrical fields. At high field strength a secondary, nonequilibrium electrical double layer may be created in the depleted concentration polarization zones of a material stimulating electroosmosis of the second kind. The potential of this induced-charge electroosmosis with respect to nonlinear flow velocities and electrokinetic instability mixing (basically destroying the concentration polarization zones) is analyzed in view of the pore space morphology in random-close packings of spherical-shaped, porous particles and hierarchically structured monoliths. Possible applications based on a fine-tuning of the illustrated effects emerge for microfluidic pumping and mixing, or the intensification of sample recovery in adsorption processes. With this perspective we want to focus the attention on concentration polarization in electrochromatographic systems by presenting and discussing original data acquired on relevant microscopic as well as macroscopic scales, and point towards the importance of related effects in colloid and membrane science.*  相似文献   

14.
The flow of non-Newtonian gassed liquids in porous media and capillaries accompanied by slip is considered. A mechanism for the slip in the flow of non-Newtonian liquids and models for describing the observed phenomena are proposed based on an analysis of accumulated experimental data.  相似文献   

15.
Porous polymer monoliths are considered to be one of the major breakthroughs in separation science. These materials are well known to be best suited for the separation of large molecules, specifically proteins, an observation most often explained by convective mass transfer and the absence of small pores in the polymer scaffold. However, this conception is not sufficient to explain the performance of small molecules. This review focuses in particular on the preparation of (macro)porous polymer monoliths by simple free-radical processes and the key events in their formation. There is special focus on the fluid transport properties in the heterogeneous macropore space (flow dispersion) and on the transport of small molecules in the swollen, and sometimes permanently porous, globule-scale polymer matrix. For small molecule applications in liquid chromatography, it is consistently found in the literature that the major limit for the application of macroporous polymer monoliths lies not in the optimization of surface area and/or modification of the material and microscopic morphological properties only, but in the improvement of mass transfer properties. In this review we discuss the effect of resistance to mass transfer arising from the nanoscale gel porosity. Gel porosity induces stagnant mass transfer zones in chromatographic processes, which hamper mass transfer efficiency and have a detrimental effect on macroscopic chromatographic dispersion under equilibrium (isocratic) elution conditions. The inherent inhomogeneity of polymer networks derived from free-radical cross-linking polymerization, and hence the absence of a rigid (meso)porous pore space, represents a major challenge for the preparation of efficient polymeric materials for the separation of small molecules.  相似文献   

16.
《印度化学会志》2023,100(1):100831
This research communicates the applications of thermos-diffusion effect associated to the squeezing flow of Jeffrey nanofluid due to horizontal channel. The problem presents the applications of inertial effects by following the Darcy–Forchheimer flow. Moreover, the effects of viscous dissipation and activation energy phenomenon has been discussed. The dimensionless attention of problem is retained. The shooting technique is implemented to present the numerical computations. The numerical validation of results is reported. The essential assessment of physical flow parameters is studied. The numerical outcomes are presented for heat and mass transfer phenomenon. It is observed that presence of inertial forces control to velocity flow in the regime. The enhancing contribution of thermal and concentration rate is noted for inertial constant.  相似文献   

17.
Computations are performed to determine the steady 3‐D viscous fluid flow forces acting on the stationary spherical suspended particle at low and moderate Reynolds numbers in the range of 0.1≤Re≤200. A slip is supposed on the boundary so that the slip velocity becomes proportional to the shear stress. This model possesses a single parameter to account for the slip coefficient λ (Pa.s/m), which is made dimensionless and is called Trostel number (Tr=λ a/μ). Decreasing slip, increases drag in all Reynolds limits, but slip has smaller effects on drag coefficient at lower Reynolds number regimes. Increasing slip at known Reynolds number causes to delay of flow separation and inflect point creation in velocity profiles. At full slip conditions, shear drag coefficient will be zero and radial drag coefficient reaches to its maximum values. Flow around of sphere at full‐slip condition is not equal to potential flow around a sphere. Present numerical results corresponding to full slip (Tr→0) are in complete accord with certain results of flow around of inviscid bubbles, and the results corresponding to no‐slip (Tr→∞) have excellent agreement with the results predicted by the no‐slip boundary condition.  相似文献   

18.
Results of numerical simulation have been reported for the flow field and diffusion deposition of nanoparticles in a model dust-loaded fibrous filter, i.e., a row of parallel fibers coated with porous permeable shells shifted toward an incident flow. The flow field and point particle collection efficiency on fibers coated with the shells have been calculated by combining the Stokes, Brinkman, and convective diffusion equations. It has been shown that the pressure drops and efficiencies of nanoparticle deposition in the filters composed by fibers with coaxial and asymmetric porous shells are almost identical.  相似文献   

19.
Recently, several families of promising porous materials have been proposed where the porous matrix forms in the presence of additional molecules or templates. These materials find applications in separations, sensing, catalysis, and other technologies. For these systems, it is important to understand the connectedness of the matrix species and the porous space. In the first case, this would characterize the integrity of the porous material, whereas the second property is directly related to the accessibility of the interior porous space and thus to the function of the material. Here, we propose an integral equation theory which describes cluster population and percolation phenomena for matrix and template species at the stage of the templated material formation. We also extend this theory to provide structural characterization of the fluid confined in a templated structure. The predictions of the theory are tested for the case of rigid molecular species made of hard sphere interaction sites and compared with computer simulations. We discuss the effect of the system density, species structure, and other parameters on the average cluster size and percolation threshold for the components of the system.  相似文献   

20.
Ion transfer at liquid|liquid junctions is one of the most fundamental processes in nature. It occurs coupled to simultaneous electron transfer at the line junction (or triple phase boundary) formed by the two liquids in contact to an electrode surface. The triple phase boundary can be assembled from a redox active microdroplet deposit of a water-immiscible liquid on a suitable electrode surface immersed into aqueous electrolyte. Ion transfer voltammetry measurements at this type of electrode allow both thermodynamic and kinetic parameters for coupled ion and electron transfer processes to be obtained. This overview summarises some recent advances in understanding and application of triple phase boundary redox processes at organic liquid|aqueous electrolyte|working electrode junctions. The design of novel types of electrodes is considered based on (i) extended triple phase boundaries, (ii) porous membrane processes, (iii) hydrodynamic effects, and (iv) generator-collector triple phase boundary systems. Novel facilitated ion transfer processes and photo-electrochemical processes at triple phase boundary electrodes are proposed. Potential future applications of triple phase boundary redox systems in electrosynthesis, sensing, and light energy harvesting are indicated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号