首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
An acyclic vertex coloring of a graph is a proper vertex coloring such that there are no bichromatic cycles. The acyclic chromatic number of G, denoted a(G), is the minimum number of colors required for acyclic vertex coloring of graph G. For a family F of graphs, the acyclic chromatic number of F, denoted by a(F), is defined as the maximum a(G) over all the graphs GF. In this paper we show that a(F)=8 where F is the family of graphs of maximum degree 5 and give a linear time algorithm to achieve this bound.  相似文献   

3.
4.
5.
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and it is denoted by a(G). From a result of Burnstein it follows that all subcubic graphs are acyclically edge colorable using five colors. This result is tight since there are 3-regular graphs which require five colors. In this paper we prove that any non-regular connected graph of maximum degree 3 is acyclically edge colorable using at most four colors. This result is tight since all edge maximal non-regular connected graphs of maximum degree 3 require four colors.  相似文献   

6.
A proper edge coloring of a graph G is acyclic if there is no 2-colored cycle in G. The acyclic chromatic index of G, denoted by χ a(G), is the least number of colors such that G has an acyclic edge coloring. A graph is 1-planar if it can be drawn on the plane so that each edge is crossed by at most one other edge. In this paper, it is proved that χ a(G) ≤Δ(G) + 22, if G is a triangle-free 1-planar graph.  相似文献   

7.
8.
9.
10.
11.
A proper vertex coloring of a graph G=(V,E) is acyclic if G contains no bicolored cycle. Given a list assignment L={L(v)∣vV} of G, we say G is acyclically L-list colorable if there exists a proper acyclic coloring π of G such that π(v)∈L(v) for all vV. If G is acyclically L-list colorable for any list assignment with |L(v)|≥k for all vV, then G is acyclically k-choosable. In this paper we prove that planar graphs without 4, 7, and 8-cycles are acyclically 4-choosable.  相似文献   

12.
An r-dynamic k-coloring of a graph G is a proper k-coloring such that for any vertex v, there are at least min{r,degG(v)} distinct colors in NG(v). The r-dynamic chromatic numberχrd(G) of a graph G is the least k such that there exists an r-dynamic k-coloring of G. The listr-dynamic chromatic number of a graph G is denoted by chrd(G).Recently, Loeb et al. (0000) showed that the list 3-dynamic chromatic number of a planar graph is at most 10. And Cheng et al. (0000) studied the maximum average condition to have χ3d(G)4,5, or 6. On the other hand, Song et al. (2016) showed that if G is planar with girth at least 6, then χrd(G)r+5 for any r3.In this paper, we study list 3-dynamic coloring in terms of maximum average degree. We show that ch3d(G)6 if mad(G)<187, ch3d(G)7 if mad(G)<145, and ch3d(G)8 if mad(G)<3. All of the bounds are tight.  相似文献   

13.
A proper vertex coloring of a graph G is linear if the graph induced by the vertices of any two color classes is the union of vertex-disjoint paths. The linear chromatic number of the graph G is the smallest number of colors in a linear coloring of G. In this paper we prove that every planar graph G with girth g and maximum degree Δ has if G satisfies one of the following four conditions: (1) g≥13 and Δ≥3; (2) g≥11 and Δ≥5; (3) g≥9 and Δ≥7; (4) g≥7 and Δ≥13. Moreover, we give better upper bounds of linear chromatic number for planar graphs with girth 5 or 6.  相似文献   

14.
A star edge-coloring of a graph G is a proper edge coloring such that every 2-colored connected subgraph of G is a path of length at most 3. For a graph G, let the list star chromatic index of G, chs(G), be the minimum k such that for any k-uniform list assignment L for the set of edges, G has a star edge-coloring from L. Dvo?ák et al. (2013) asked whether the list star chromatic index of every subcubic graph is at most 7. In Kerdjoudj et al. (2017) we proved that it is at most 8. In this paper we consider graphs with any maximum degree, we proved that if the maximum average degree of a graph G is less than 145 (resp. 3), then chs(G)2Δ(G)+2 (resp. chs(G)2Δ(G)+3).  相似文献   

15.
An ant-based algorithm for coloring graphs   总被引:1,自引:0,他引:1  
This paper presents an ant-based algorithm for the graph coloring problem. An important difference that distinguishes this algorithm from previous ant algorithms is the manner in which ants are used in the algorithm. Unlike previous ant algorithms where each ant colors the entire graph, each ant in this algorithm colors just a portion of the graph using only local information. These individual coloring actions by the ants form a coloring of the graph. Even with the lack of pheromone laying capacity by the ants, the algorithm performed well on a set of 119 benchmark graphs. Furthermore, the algorithm produced very consistent results, having very small standard deviations over 50 runs of each graph tested.  相似文献   

16.
We consider the chromatic number of a family of graphs we call box graphs, which arise from a box complex in nn-space. It is straightforward to show that any box graph in the plane has an admissible coloring with three colors, and that any box graph in nn-space has an admissible coloring with n+1n+1 colors. We show that for box graphs in nn-space, if the lengths of the boxes in the corresponding box complex take on no more than two values from the set {1,2,3}{1,2,3}, then the box graph is 33-colorable, and for some graphs three colors are required. We also show that box graphs in 3-space which do not have cycles of length four (which we call “string complexes”) are 33-colorable.  相似文献   

17.
Acyclic chromatic indices of planar graphs with large girth   总被引:1,自引:0,他引:1  
An acyclic edge coloring of a graph G is a proper edge coloring such that no bichromatic cycles are produced. The acyclic chromatic index a(G) of G is the smallest k such that G has an acyclic edge coloring using k colors.In this paper, we prove that every planar graph G with girth g(G) and maximum degree Δ has a(G)=Δ if there exists a pair (k,m)∈{(3,11),(4,8),(5,7),(8,6)} such that G satisfies Δk and g(G)≥m.  相似文献   

18.
Every planar graph is known to be acyclically 7-choosable and is conjectured to be acyclically 5-choosable (Borodin et al. 2002) [7]. This conjecture if proved would imply both Borodin’s acyclic 5-color theorem (1979) and Thomassen’s 5-choosability theorem (1994). However, as yet it has been verified only for several restricted classes of graphs.Some sufficient conditions are also obtained for a planar graph to be acyclically 4-choosable and 3-choosable. In particular, acyclic 4-choosability was proved for the following planar graphs: without 3-cycles and 4-cycles (Montassier, 2006 [23]), without 4-cycles, 5-cycles and 6-cycles (Montassier et al. 2006 [24]), and either without 4-cycles, 6-cycles and 7-cycles, or without 4-cycles, 6-cycles and 8-cycles (Chen et al. 2009 [14]).In this paper it is proved that each planar graph with neither 4-cycles nor 6-cycles adjacent to a triangle is acyclically 4-choosable, which covers these four results.  相似文献   

19.
The acyclic list chromatic number of every planar graph is proved to be at most 7. © 2002 Wiley Periodicals, Inc. J Graph Theory 40: 83–90, 2002  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号