首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the feasibility of using cuprous chloride (CuCl) as a working fluid in a new high temperature heat pump with vapor compression is analyzed. The heat pump is integrated with a copper–chlorine (Cu–Cl) thermochemical water splitting cycle for internal heat recovery, temperature upgrades and hydrogen production. The minimum temperature of heat supply necessary for driving the water splitting cycle can be lowered because the heat pump increases the working fluid temperature from 755 K up to ~950 K, at a high COP of ~6.5. Based on measured data available in past literature, the authors have determined the Ts diagram of CuCl, which is then used for the thermodynamic modeling of the cycle. In the heat pump cycle, molten CuCl is flashed in a vacuum where the vapor quality reaches ~2.5%, and then it is boiled to produce saturated vapor. The vapor is then compressed in stages (with inter-cooling and heat recovery), and condensed in a direct contact heat exchanger to transfer heat at a higher temperature. The heat pump is then integrated with a copper–chlorine water splitting plant. The heat pump evaporator is connected thermally with the hydrogen production reactor of the water splitting plant, which performs an exothermic reaction that generates heat at 760 K. Additional source heat is obtained from heat recovery from the hot reaction products of the oxy-decomposer. The heat pump transfers heat at ~950 K to the oxy-decomposer to drive its endothermic chemical reaction. It is shown that the heat required at the heat pump source can be obtained completely from internal heat recovery within the plant. First and second law analyses and a parametric study are performed for the proposed system to study the influence of the compressor's isentropic efficiency and temperature levels on the heat pump's COP. Two new indicators are presented: one represents the heat recovery ratio (the ratio between the thermal energy obtained by internal heat recovery, and the energy needed at the heat pump evaporator), and the other is the specific heat pump work per mole of hydrogen produced. This new heat pump with CuCl as a working fluid can be attractive in other industrial contexts where high temperature heat is needed. One may replace a common heating technology (combustion or electric heating) with the present sustainable method that uses heat recovery and high efficiency temperature upgrading for heating applications.  相似文献   

2.
《印度化学会志》2021,98(11):100200
For the first time, the heat transfer performance of a CuO–ZnO (80:20)/water hybrid has been studied experimentally and numerically in a shell and tube heat exchanger under turbulent flow conditions nanofluid (STHE). All experiments are carried out with 0.01 ​vol% CuO–ZnO (80:20)/water hybrid nanofluid at Reynolds numbers (NRe) ranging from 1900 to 17,500. The stabilized hybrid nanofluids (30 ​°C-Tube side) are then used as a coolant to reduce the hot fluid (60 ​°C-shell side) temperature using a STHE, with the results for the convective heat transfer coefficient, Nusselt number, friction factor, and pressure drop reported. The primary goal of this paper is to investigate the impact of hybrid nanoparticle mixing ratio optimization on STHE heat transfer efficiency under various operating conditions. According to the findings, the CuO–ZnO (80:20)/water hybrid nanofluid improved the heat transfer performance of the STHE at all Reynolds numbers. When using nanofluid over water, the Nusselt number and pressure drop were improved by approximately 33% and 13%, respectively. The hybrid nanofluid's maximum thermal performance factor and thermal efficiency enhancement were 1.45 and 7%, respectively, at NRe ​= ​17,500. According to the study, the thermal conductivity of nanofluid varies by only 5% after ten trials. Furthermore, the ANSYS Fluent program was used to predict the behavior of the hybrid nanofluid in STHE, and the simulation results fit the experimental values very well.  相似文献   

3.

Present experimental investigation incorporates characterization of Al nanopowder, synthesis of Al/water nanofluids, and effect of these nanofluids on thermal performance of compact heat exchanger. Al nanoparticles are characterized using TEM and XRD. Al/water nanofluid is prepared by dispersing metal basis aluminium nanoparticles of average 100 nm size into double distilled water at two different particle volume concentrations of 0.1 and 0.2%. The nanofluids are prepared by two-step method and cetyl trimethyl ammonium bromide surfactant is used to stabilize the nanofluid. Thermo-physical properties of nanofluids at two different concentrations and their variation with fluid temperature are measured experimentally. It is examined that thermal conductivity, viscosity, and density of the nanofluid increased with the increase of volume concentrations. Furthermore, by increasing the fluid temperature, thermal conductivity is intensified, while the viscosity and density are decreased. Heat transfer parameters are strong functions of these thermo-physical properties. Therefore, comprehensive findings on heat transfer coefficient, Nusselt number, colburn factor, friction factor, and effectiveness are determined experimentally for prepared nanofluids passing under laminar conditions through single-pass cross-flow compact heat exchanger attached with multi-louvered fins.

  相似文献   

4.
Thermal analysis of loop heat pipe used for high-power LED   总被引:3,自引:0,他引:3  
The goal of this study is to improve the thermal characteristics of high-power LED (light emitting diode) package by using a loop heat pipe. The heat-release characteristics of high-power LED package are analyzed and a novel loop heat pipe (LHP) cooling device for high-power LED is developed. The thermal capabilities, including start-up performance, temperature uniformity and thermal resistance of loop heat pipe under different heat loads and incline angles have been investigated experimentally. The obtained results indicates that the thermal resistance of the heat pipe heat sink is in the range of 0.19–3.1 K/W, the temperature uniformity in the evaporator is controlled within 1.5 °C, and the junction temperature of high-power LED could be controlled steadily under 100 °C for the heat load of 100 W.  相似文献   

5.

The energetic analysis of an air handling unit (AHU) combined with an enthalpy air-to-air heat exchanger has been studied to improve the first law thermodynamic efficiency. The energy balance equations for enthalpy air-to-air heat exchanger, conditioned space, heating coil, cooling coil and mixing box have been performed and solved based on a program developed in Engineering Equation Solver. The results showed that using an enthalpy air-to-air heat exchanger leads to energy recovery which in turn decreased the total required AHU power. The effect of using an enthalpy air-to-air heat exchanger on recovered energy in hot and humid ambient is more than the cold and dry one. Using the enthalpy air-to-air heat exchanger, the cooling coil load decreases by 28.27%, which in turn increases the first law efficiency by 32.8%.

  相似文献   

6.
In this present work, effect of Al/water nanofluids on the rheological performance of an automobile car radiator has been investigated. Nanofluids were fabricated by two-step methods, i.e., dispersing of aluminum metal bases nanoparticles of size 75–135 nm in double-distilled water. Experiments were conducted on single-pass cross-flow compact heat exchanger by varying the various parameters such as inlet temperature, flow rate through the heat exchanger, concentration of nanoparticles and velocity of air employed for cooling purpose. It was concluded that the hot side Nusselt numbers are improved by 3.37 and 5.0877% for 0.2 and 0.3% concentrations of nanofluids, respectively, at 318.15 K inlet fluids temperature as compared to base fluids. Colburn factor was increased by 12.94 and 23.45% for 0.2 and 0.3% nanoparticles volume concentration of nanofluids, respectively, at 318.15 K inlet temperature with respect to double-distilled water. Hot fluid side friction factor was increased by 14.04 and 20.916% for 0.2 and 0.3% nanoparticles volume concentration of nanofluids with respect to base fluids, but this average value of friction factor was decreased by 2.29 and 9.1412% when temperature was increased from 318.15 to 323.15 K and 328.15 K, respectively.  相似文献   

7.
The research presented here evaluates the heat transfer coefficient of the contact interface of a thin liquid polymer film between a pair of columnar aluminum bodies with an initial temperature difference of approximately 160 K. We measured the unsteady temperature changes inside the columns. The heat transfer test was performed with three types of liquid polymers: squalane, oleic acid, and silicone oil. The heat transfer coefficient of the polymer films as a fitting parameter was obtained by ensuring the numerically computed time evolution of the columns’ temperature corresponded with the experimentally measured data. The interfacial heat transfer coefficients of the thin polymer films (mean thickness: 60 μm) for all three polymers used were 1.75 kW/m2·K, 2.75 kW/m2·K, and 4.10 kW/m2·K. The present estimating method for determining interfacial heat transfer coefficients was suitable for a material-polymer film-material contact model. The time evolution of the temperature at the contact surfaces was also effectively evaluated using the numerical simulation.  相似文献   

8.
在内径98mm的鼓泡浆态反应器内,考察了工艺参数对浸没表面与浆液间的传热系数的影响。浆态反应器轴向装有一个外径20mm,长120mm的测量传热膜系数用的铜制元件。为了模拟浆态FT合成反应系统,三相系统由N2、液体石蜡和石英砂(平均粒径53μm、110μm、180μm)或63μm以下的Fe2O3组成。工艺参数变化范围如下:表观气速0.005m/s~0.08m/s, 温度353K~453K, 压力0.1MPa~0.8MPa,固体的质量分数0~20%,初始液位高度625mm~1240mm。本研究使用单孔板、多孔板、烧结金属板三种气体分布器类型。结合实验数据,应用最小二乘法求得各个参数值,得到的无因次传热系数关联式为St=0.179(ReFr)-0.25Pr-0.66,相关指数0.98,最大偏差18%。该关联式可应用于气-液和粒径小于100μm的气-液-固体系。  相似文献   

9.
The study of the inclined flow along with the heterogeneous/homogeneous reactions in the fluid has been widely used in many industrial and engineering applications, such as petrochemical, pharmaceutical, materials science, heat exchanger design, fluid flow through porous media, etc. The purpose of this study is to present an infinite shear rate viscosity model using the inclined Carreau fluid with nanoscale heat transport. The model considers the effect of inclined angle on the fluid’s viscosity and the transfer of heat at the nanoscale. The result shows that the viscosity of the fluid decreases by increasing the inclination angle and the coefficient of heat transfer also increases with the inclination. The model can be used to predict the viscosity and heat transfer fluid’s behavior in the inclined systems that is widely used in the industrial and engineering applications. The results provide a better understanding of the inclined flow behavior of fluids and the heat transfer at the nanoscale, which can be useful in heat exchanger design, fluid flow through porous media, etc. Greater Infinite shear rate viscosity parameter gives the higher magnitude of Carreau fluid velocity. Moreover, inclined magnetic field reduces the velocity due to Lorentz force. Two numerical schemes are used to solve the model, BVP4C and Shooting.  相似文献   

10.
Nickel clad or nickel wired fused silica column bundles were constructed and evaluated. The nickel sheathing or wire functions not only as the heating element for direct resistive heat, but also as the temperature sensor, since nickel has a large resistive temperature coefficient. With this method the temperature controller is able to apply power and measure the temperature simultaneously on the same nickel element, which can effectively avoid the temperature overshoot caused by any delayed response of the sensor to the heating element. This approach also eliminates the cool spot where a separate sensor touches the column. There are some other advantages to the column bundle structure: (1) the column can be heated quickly because of the direct heating and the column's low mass, shortening analysis time. We demonstrate a maximum heating rate of 13 °C/s (800 °C/min). (2) Cooling time is also short, increasing sample throughput. The column drops from 360 °C to 40 °C is less than 1 min. (3) Power consumption is very low – 1.7 W/m (8.5 W total) for a 5 m column and 0.69 W/m (10.4 W total) for a 15 m column when they are kept at 200 °C isothermally. With temperature programming, the power consumption for a 5 m column is less then 70 W for an 800 °C/min ramp to 350 °C. (4) The column bundle is small, with a diameter of only about 2.25 in. All these advantages make the column bundle ideal for fast GC analysis or portable instruments. Column efficiencies and retention time repeatability have been evaluated and compared with the conventional oven heating method in this study. For isothermal conditions, the column efficiencies are measured by effective theoretical plate number. It was found that the plate number with resistive heat is always less than with oven heat, due to uneven heat in the column bundle. However, the loss is not significant – an average of about 1.5% for the nickel clad column and 4.5% for the nickel wired column. Separation numbers are used for the comparison with temperature programming, with results similar to those observed for isothermal conditions. Retention time repeatability for direct heat were 0.010% RSD for isotheral and 0.037% RSD for temperature programming, which is similar to those obtained by oven heat. Applications have been demonstrated, including diesel and PAH analysis.  相似文献   

11.

This paper aims to investigate the effects of moisture migration and groundwater seepage on the heat transfer capacity of ground heat exchangers in stratified soils. A three-dimensional unsteady groundwater flow and heat transport model was established using finite volume method. Sixteen cases with different model considerations and initial soil conditions were simulated based on the proposed model. A group of 8 cases considering only transverse moisture migration and another group considering both transverse and longitudinal moisture migration were compared. The heat and moisture fields after 30 days of operation reveal that considering the change of saturation caused by vertical moisture transfer, the soil temperature field will be affected, but borehole outlet temperature was less influenced. The absolute value of outlet temperature difference between corresponding cases in the two groups is only about 0.2 °C. The position of groundwater seepage and arrangement of unsaturated soil layers with different degrees of saturation on heat transfer capacity of vertical ground heat exchanger were further explored. The results show that the longitudinal moisture migration would be made more influential by the existence of seepage layer, because the average relative deviation of inlet and outlet temperature difference between the corresponding cases of Group 1 and Group 2 was 1.34% when setting seepage layer and was 0.44% when without seepage layer. Heat transfer performance of borehole heat exchanger is also affected by the location of seepage layer. The average relative deviation of inlet and outlet temperature difference between the reference case and cases with seepage in the top, middle and bottom layers is 34.18%, 25.08% and 16.82%, respectively. The arrangement of unsaturated soil layers also has a certain effect. When the soil layer with low degree of saturation is located in the upper layer of soil, heat transfer capacity is better.

  相似文献   

12.
This paper provides a focus on the R&D of solid sorption coolers and heat pumps made in the Luikov Heat & Mass Transfer Institute (CIS Countries Association Heat Pipes) under Thermacore, Inc. Agreement.Commercial and space applications of sorbent systems offer an attractive alternative to compression systems and liquid sorption systems for cooling, heating and air conditioning.MgA zeolites solid sorption systems are analyzed. Some new results are presented.Solid sorption heat pump technology utilizing heat pipe heat recovery with a condensing/evaporating refrigerant holds considerable promise for bivariant (space and domestic) applications due to the variable temperature and variable load capabilities of such machines.  相似文献   

13.
Pervaporation through zeolite membranes involves local heat effects and combined heat and mass transport. The current state-of-the-art Maxwell–Stefan (M–S) models do not take these effects into account. In this study, transport equations for the coupled heat and mass transport through a zeolite membrane are derived from the framework of non-equilibrium thermodynamics (NET). Moreover, the assumption of equilibrium between the adjacent bulk phases at the feed and permeate sides of the zeolite layer is abandoned in favor of local equilibrium. The equations have been used to model pervaporation of water through a 2 m thick NaA type zeolite membrane, deposited on an asymmetric -alumina support, at a feed temperature of 348 K. Assuming a flux of 10 kg m−2 h−1(0.15 mol m−2 s−1), the transport through the zeolite layer, as well as the liquid feed side boundary layer and the support layers is modeled. The activity, fugacity, and temperature profiles are calculated with and without taking coupling effects and surfaces into account. The profiles show distinct differences between the two cases. Including the surface effects leads to discontinuities in the activity and temperature at the membrane interfaces. A significantly higher temperature drop of 1.3 K is calculated across the zeolite, compared to 0.4 K when surface and coupling effects are not accounted for. The calculated decrease in temperature over the zeolite layer is dominated by the surfaces. This could indicate that temperature polarization is, to a large extent, a surface effect. The heat flux induces an extra driving force for mass transport, reducing the activity difference over the membrane. A positive jump in activity is observed at the interfaces, revealing the mass transport across the interfaces is governed by the coupling with the heat flux. The support layers contribute significantly to the total mass transport resistance.  相似文献   

14.
The structural and transport properties (resistivity, thermopower and Hall effect), specific heat and thermal conductivity have been measured for GaN nanocrystalline ceramic prepared by hot pressing. It was found that the temperature dependence of resistivity in temperature range 10-300 K shows the very low activation energy, which is ascribed to the shallow donor doping originating in amorphous phase of sample. The major charge carriers are electrons, what is indicated by negative sign of Hall constant and Seebeck coefficient. The thermopower attains large values (−58 μV/K at 300 K) and was characterized by linear temperature dependence which suggests the diffusion as a major contribution to Seebeck effect. The high electron concentration of 1.3×1019 cm−3 and high electronic specific heat coefficient determined to be 2.4 mJ/molK2 allow to conclude that GaN ceramic demonstrates the semimetallic-like behavior accompanied by very small mobility of electrons (∼0.1 cm2/V s) which is responsible for its high resistivity. A low heat conductivity of GaN ceramics is associated with partial amorphous phase of GaN grains due to high pressure sintering.  相似文献   

15.
Poly(L ‐lactic acid)/poly(D ‐lactic acid) (PLLA/PDLA) blended with plasticizer poly(ethylene glycol) and nucleation agent TMC‐306 as‐spun fibers were prepared by melt spinning. The posttreatment was applied by hot drawing at 70°C and then heat‐treating at different temperatures for 30 minutes. In the process of hot drawing, orientation induced the further formation of the sc crystals and increased the degree of crystallinity of drawn fibers. When the hot drawing ratio reached 3 times, the properties of the fibers were relatively better. The highly oriented fibers containing pure sc crystals with high crystallinity were obtained by heat‐treating at a temperature above the melting point of α crystals. The posttreated PLLA/PDLA fibers with poly(ethylene glycol) and TMC‐306 (LDTP) obtained by hot drawing to 3 times at 70°C and then annealing at 170°C for 30 minutes exhibited the best antioxidative degradation and heat resistance properties. The initial decomposition temperature (T5%) and heat resistance of posttreated LDTP fiber were about 94°C and 20°C higher than those of the commercial PLLA fiber, respectively.  相似文献   

16.
Three kinds of lithium chloride desiccants were selected, which are considered to be potential and interesting working fluids for a desiccant/dehumidification or absorption refrigeration system, and their isobaric specific heat capacities were determined in this context. Experiments were conducted at a high accuracy twin-cell scanning calorimeter. The temperature accuracy and heat flux resolution of the calorimeter are ±0.05 K and 0.1 μW respectively. The data of lithium chloride + water and lithium chloride + triethylene glycol (TEG)/propylene glycol (PG) + water systems were achieved at temperatures from 308.15 K to 343.15 K and atmospheric pressure. The mass fraction of LiCl ranged from 15% to 45% in the LiCl + H2O system, and the mass fraction of LiCl and glycol ranged from 10% to 23.3% and 20% to 46.7% in the ternary systems respectively. Based on the experimental heat capacity data, a universal empirical formula was correlated as a function of temperature and solute mass fraction. In the experimental mass fractions and temperatures range, the average absolute deviation (AAD) between experiment results and calculated values is no more than 0.15%, and maximum absolute deviation (MAD) is within 0.38%. These thermodynamic data of lithium chloride solutions can be effectively used for analysis and design of desiccant/dehumidification systems and absorption refrigeration systems in both refrigeration and chemical industry.  相似文献   

17.
Increasing efficacy of plate heat exchanger (PHE) is a method of reducing energy consumption of milk pasteurization and sterilization in dairy industries. In order to enhance heat transfer capability of water as a hot stream in PHEs, multiwalled carbon nanotubes (MWCNT) were added to water. An experimental setup was designed and manufactured to measure heat transfer coefficient and Nusselt number (Nu) as two key parameters for convective heat transfer. This system had two individual loops for hot and cold fluids. The experimental results clearly indicated that heat transfer coefficient and Nu number of pure water increased by adding MWCNT with weight concentration of less than 1 wt%. With increasing weight concentration of the nanoparticles, heat transfer coefficient and Nu number increased. This augmentation was intensified at higher Peclet numbers which showed more effective presence of them at high flow rates of nanofluids. Moreover, at constant weight concentration, both heat transfer coefficient and Nu number increased. Augmentation of heat transfer capability resulted in more heat exchange with milk fluid in a short time; thus, before occurrence of fouling in plates of exchanger, pasteurization of milk and production of the products would be easier.   相似文献   

18.
We measured thermal diffusivity and heat capacity of polymers by laser flash method, and the effects of measurement condition and sample size on the accuracy of the measurement are discussed. Thermal diffusivities of PTFE films with thickness 200–500 μm were the same as those data that have been reported. But, the data for film thickness less than 200 μm have to be corrected by an equation to cancel thermal resistance between sample film and graphite layers for receiving light and detecting temperature. Thermal diffusivity was almost unaffected by the size of area vertical to the direction of laser pulse, because heat flow for the direction could be negligible. Specific heat capacity of polymer film was exactly measured at room temperature, provided that low absorbed energy (< 0.3 J) and enough sample mass (> 25 mg) were satisfied as measuring conditions. Thermal diffusivity curve of PS or PC versus temperature had a terrace around Tg, whereas that of PE decreased monotonously with increasing in temperature until Tm. Further, we estimated relative specific heat capacity (RCp) by calculating ratios of heat capacities at various temperatures to the one at 299 K. RCp for PS obtained by laser flash method was larger than that obtained by DSC method, whereas the RCps for PE obtained by the both methods agreed with one another until Tm (305 K). RCp for PS decreased linearly, with increase in temperature after it increased linearly until Tg (389 K), showing similarity to temperature dependency of thermal conductivity. RCp for PE also decreased until Tm, similar to thermal conductivity. ©1995 John Wiley & Sons, Inc.  相似文献   

19.
A small sample adiabatic calorimeter for measuring heat capacities in the temperature range 60–350 K using the Nernst method has been constructed. The sample cell of the calorimeter is 6 cm3 in the internal volume, equipped with a miniature platinum thermometer and surrounded by two adiabatic shields. Two sets of 6-junction chromel-copel thermocouples were mounted between the cell and the shields to indicate the temperature differences between them. The adiabatic conditions of the cell were automatically controlled by two sets of temperature controller. A mechanical pump was used to pump out the vapour of liquid nitrogen in the cryostat to solidify N2 (1), and 60 K or even lower temperature was obtained. The performance of this apparatus was evaluated by heat capacity measurements on α-alumina. The deviations of experimental results from a smoothed curve lie within ±0.2%, while the inaccuracy is within ±0.5% compared with the recommended reference data in the wole temperature range.  相似文献   

20.
The heat capacities of isobutyl tert-butyl ether in crystalline, liquid, supercooled liquid, and glassy states were measured by vacuum adiabatic calorimetry over the temperature range from (7.68 to 353.42) K. The purity of the substance, the glass-transition temperature, the triple point and fusion temperatures, and the enthalpy and entropy of fusion were determined. Based on the experimental data, the thermodynamic functions (absolute entropy and changes of the enthalpy and Gibbs free energy) were calculated for the solid and liquid states over the temperature range studied and for the ideal gas state at T = 298.15 K. The ideal gas heat capacity and other thermodynamic functions in wide temperature range were calculated by statistical thermodynamics method using molecular parameters determined from density-functional theory. Empirical correction for coupling of rotating groups was used to calculate the internal rotational contributions to thermodynamic functions. This correction was found by fitting to the calorimetric entropy values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号