首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
《印度化学会志》2022,99(11):100758
Over the years, the fluid flows in conjunction with thermal transport between non-parallel surfaces having converging nature is of great significance due to their broad spectrum of applications, which include fluid flows through nozzles in petroleum engineering, blood flow in arteries, lubrication systems, automobile radiators, thermal pumps, and water purification processes. Additionally, hybrid nanofluid is a prolific topic because of its thermal properties and potentials which provide a better performance even compared with common nanofluid in optimizing heat transfer. Therefore, this article presents a numerical simulation to investigate the heat transport characteristics of hybrid nanofluids in Jeffery-Hamel flow through a convergent channel. The considered hybrid nanofluids are composed of Copper (Cu) and Graphene-oxide (Go) as suspended nanoparticles and water as base fluid. This analysis further includes the impacts of viscous dissipation and magnetic field. A mathematical model for fluid flow and heat transfer are constructed with the help of cylindrical polar coordinates. The governing equations are converted into a system of ordinary differential equations (ODEs) by Lie symmetry group transformation. A MATLAB code is exercise to get the numerical solutions for flow and thermal distributions. An interesting phenomenon is that dual solutions are obtained in the computation. Thus, a comprehensive discussion is included on the dual solutions for various involved variables. The current findings may be employed in petroleum science, r biomedical scientists, polymer industry, etc.  相似文献   

2.
《印度化学会志》2023,100(1):100831
This research communicates the applications of thermos-diffusion effect associated to the squeezing flow of Jeffrey nanofluid due to horizontal channel. The problem presents the applications of inertial effects by following the Darcy–Forchheimer flow. Moreover, the effects of viscous dissipation and activation energy phenomenon has been discussed. The dimensionless attention of problem is retained. The shooting technique is implemented to present the numerical computations. The numerical validation of results is reported. The essential assessment of physical flow parameters is studied. The numerical outcomes are presented for heat and mass transfer phenomenon. It is observed that presence of inertial forces control to velocity flow in the regime. The enhancing contribution of thermal and concentration rate is noted for inertial constant.  相似文献   

3.
《印度化学会志》2023,100(1):100837
The heat transfer phenomenon subject to thermos-diffusion effects convey important applications in the heating processes, extrusion systems, chemical processes and various engineering systems. The objective of current work is to observe the contribution of Soret and Dufour effects in oscillating shield for cross diffusion flow. The perpendicular shield with oscillating motion induced the flow. The magnitude of oscillations is assumed to be small so that laminar flow due to oscillating shield has been resulted. The motivations for addressing the thermos-diffusion phenomenon due to oscillating of shield are due to applications in oscillatory pumps, moving surface, metal detectors, power systems etc. The dimensionless problem is obtained via introducing the appropriate set of variables. The numerical outcomes are suggested by using the most interesting explicit finite difference scheme. The physical illustration for flow parameters is presented. Moreover, the aspect of physical quantities involving the flow are graphically reported.  相似文献   

4.
Nanofluid thermal applications considerably enhanced the heat and mass transfer patterns, which plays novel role in many bio-technological, renewable energy and engineering applications. Many prime applications off nanomaterials have been inspected in solar energy and thermal engineering issues to benefit human society. Furthermore, motile microorganisms, that have applications in petroleum sciences, enzymes biotechnology, biofuels, pharmaceutical, and other fields, greatly improve the stability of nanofluids. The current study examines the Darcy-Forchhiemer accelerating flow of Eyring-Powell nanofluid over an oscillating surface which contains the thermal radiations and gyrotactic microorganisms. The extension in the heat and mass transfer expression is suggested by following the relations of Cattaneo–Christov theory. Furthermore, the non-uniform heat source/sink phenomenon is also being focused to improve the thermal aspect of model. The flow problem model is consisting of non-linear PDEs that are solved by using the homotopy analysis scheme. After highlighting the convergence zone, physical characteristics for parameters are listed.  相似文献   

5.
《印度化学会志》2022,99(11):100762
In the current investigation, it is anticipated to examine the influence of heat absorption and radiation on an unsteady transient MHD heat and mass transfer natural convective flow of an optically thin non-Grey Newtonian fluid through an abruptly started infinite vertical porous plate with ramped wall temperature and plate velocity in the presence of Soret and chemical reaction of the first order is solved precisely. Using the similarity variables, the governed PDE's are converted into dimensionless governing equations and they are solved numerically by employing the finite element technique. Numerical calculations and graphs are used to illustrate the important features of the solution on fluid flow velocity, heat, and mass transfer characteristics under different quantities of parametric circumstances entering into the problem. Moreover, we computed the physical variables such as the coefficient of drag force, rate of heat, and mass transfer. The findings indicate that when the thermal radiation parameter increases, the thermal boundary layer becomes thinner. To establish the veracity of our present results, we compared them to previously published research and found substantial concordance.  相似文献   

6.
The present paper addresses microvascular blood flow with heat and mass transfer in complex wavy microchannel modulated by electroosmosis. Investigation is carried out with joule heating and chemical reaction effects. Further, viscous dissipation is also considered. Using Debye–Huckel, lubrication theory, and long wavelength approximations, analytical solutions of dimensionless boundary value problems are obtained. The impacts of different parameters are examined for temperature and concentration profile. Furthermore, nature of pressure rise is also investigated to analyze the pumping characteristics. Important results of flow phenomena are explored by means of graphs.  相似文献   

7.
《印度化学会志》2023,100(2):100913
Owing to contribution of thermo-diffusion phenomenon in various engineering and industrial frame works, scientists have presented some exclusive investigations on this topic. In current research, the thermos-diffusion prospective of second grade material accounted by a moving cylinder have been predicted. The applications of Soret and Dufour effects based on the thermos-diffusion phenomenon is evaluated. The magnetic force and viscous dissipation effects are presented for the current flow model. Additionally, the improvement in thermal transport of viscoelastic fluid is suggested with radiative phenomenon. The convective boundary constraints are used to report the thermos-diffusion phenomenon. The system based on dimensionless form is obtained with interaction of new variables. The shooting technique is used for numerical observations by using MATLAB software. The physical impact of phenomenon in view of parameters is graphically attributed. It has been noted that increasing velocity profile is results due to curvature parameter and viscoelastic parameter. The enhancement in thermal profile is noted due to Dufour number and Eckert number.  相似文献   

8.
We study the effects of Marangoni stresses on the flow in an evaporating sessile droplet, by extending a lubrication analysis and a finite element solution of the flow field in a drying droplet, developed earlier. The temperature distribution within the droplet is obtained from a solution of Laplace's equation, where quasi-steadiness and neglect of convection terms in the heat equation can be justified for small, slowly evaporating droplets. The evaporation flux and temperature profiles along the droplet surface are approximated by simple analytical forms and used as boundary conditions to obtain an axisymmetric analytical flow field from the lubrication theory for relatively flat droplets. A finite element algorithm is also developed to solve simultaneously the vapor concentration, and the thermal and flow fields in the droplet, which shows that the lubrication solution with the Marangoni stress is accurate for contact angles as high as 40 degrees. From our analysis, we find that surfactant contamination, at a surface concentration as small as 300 molecules/microm(2), can almost entirely suppress the Marangoni flow in the evaporating droplet.  相似文献   

9.
Considering the significance of non-Newtonian fluid usage in manufacturing such as molten plastics, polymeric materials, pulps, and so on, significant efforts have been made to investigate the phenomenon of non-Newtonian fluids. In this article the influences of heat and mass transfer on non-Newtonian Walter's B fluid flow over uppermost catalytic surface of a paraboloid is encountered. An elasticity of the fluid layer is considered in the freestream together with heat source/sink and has the tendency to cause heat flow in the fluid saturated domain. The flow problem of two-dimensional Walter's B fluid is represented using Law of conservation of mass, momentum, heat, and concentration along with thermal and solutal chemical reactive boundary conditions. The governing equations are non-linear partial differential equation and are non-dimensionalized by employing stream function and similarity transformation. The final dimensionless equations yielded are coupled non-linear ordinary differential equations. Furthermore, shooting technique along with RK-4th order method is used to get the numerical results. Graphs and tables are modeled by using MATLAB software to check the effects of Walter's B parameter, Chemical reaction parameter and Thickness parameter on temperature, velocity, and concentration profiles. Tabular analysis shows the results of some physical parameters like skin friction coefficient, Nusselt number and Sherwood number due to the variation of Walter's B parameter, thickness parameter and chemical reactive parameter.  相似文献   

10.
The spiral plate heat exchanger (SHE) is widely used in plenty of industrial services in full counter current flow liquid-liquid heat exchange. We have produced a thermal modelling of the heat exchanges in both steady-state and time dependent cases with 2D spiral geometry, allowing computation with different materials, forced convective heat transfer models in turbulent flow and geometrical parameters options. We will display here some results in steady-state conditions in order to improve the exchanger performances.  相似文献   

11.
We show here an adaptation of the classical Flash Method permitting the measure of the thermal conductivity of semi-transparent porous materials. A flash lamp send a heat pulse on the upper face of a cylindrical sample and lower face temperature is analysed. The semi-transparent material is sandwiched between two copper slices. The sample used scatters thermal radiation, and absorbs it very little. It is therefore possible to account for two parts of heat transfer through the material: a pure conductive phenomenon and a radiative one. In most insulating materials radiative transfer represents about 1/3 of the total heat flux at the ambiant temperature. The problem is solved with electrical analogy, quadripoles technique and Laplace transform. The modelization brings out two physical character parameters of the material and a coefficient qualifying the thermal exchange between the sample and the environment during the experiment.  相似文献   

12.
13.
Heat conduction through molecular chains connecting two reservoirs at different temperatures can be asymmetric for forward and reversed temperature biases. Based on analytically solvable models and on numerical simulations we show that molecules rectify heat when two conditions are satisfied simultaneously: the interactions governing the heat conduction are nonlinear, and the junction has some structural asymmetry. We consider several simplified models where a two-level system (TLS) simulates a highly anharmonic vibrational mode, and asymmetry is introduced either through different coupling of the molecule to the contacts, or by considering internal molecular asymmetry. In the first case, we present analytical results for the asymmetric heat current flowing through a single anharmonic mode using different forms for the TLS-reservoirs coupling. We also demonstrate numerically, studying a realistic molecular model, that a uniform anharmonic molecular chain connecting asymmetrically two thermal reservoirs rectifies heat. This effect is stronger for longer chains, where nonlinear interactions dominate the transfer process. When asymmetry is related to the internal level structure of the molecule, numerical simulations reveal a nontrivial rectification behavior. We could still explain this behavior in terms of an effective system-bath coupling. Our study suggests that heat rectification is a fundamental characteristic of asymmetric nonlinear thermal conductors. This phenomenon is important for heat control in nanodevices and for understanding of energy flow in biomolecules.  相似文献   

14.
Several experimental techniques either under steady state or transient heat transfer conditions, have been developed to evaluate thermal conductivity and thermal diffusivity of materials. However, testing difficulties resulting from specimen size, extended testing time and heat losses, have somewhat impaired the applicability of many of them. In this respect, the use of the laser flash technique for thermal diffusivity measurements, is a very convenient alternative, considering its basic modeling equation is independent of the temperature gradient as well as the heat flow, and in addition the heat losses can be analytically treated. Another important advantage of the technique is its rapid experimental execution. In this work, it is presented as an investigation concerning how the testing conditions such as specimen coating, laser power and pulse duration, base line adoption, heat losses correction methods, and specimen thickness, may affect the thermal diffusivity measurements of some ceramic materials using the laser flash technique.  相似文献   

15.

This paper investigates the combined effects of using nanofluid, a porous insert and corrugated walls on heat transfer, pressure drop and entropy generation inside a heat exchanger duct. A series of numerical simulations are conducted for a number of pertinent parameters. It is shown that the waviness of the wall destructively affects the heat transfer process at low wave amplitudes and that it can improve heat convection only after exceeding a certain amplitude. Further, the pressure drop in the duct is found to be strongly influenced by the wave amplitude in a highly non-uniform way. The results, also, show that the second law and heat transfer performances of the system improve considerably by thickening the porous insert and decreasing its permeability. Yet, this is associated with higher pressure drops. It is argued that the hydraulic, thermal and entropic behaviours of the system are closely related to the interactions between a vortex formation near the wavy walls and nanofluid flow through the porous insert. Viscous irreversibilities are shown to be dominant in the core region of duct where the porous insert is placed. However, in the regions closer to the wavy walls, thermal entropy generation is the main source of irreversibility. A number of design recommendations are made on the basis of the findings of this study.

  相似文献   

16.
PurposeThe purpose of the current framework is to scrutinize the two-dimensional flow and heat transfer of Casson nanofluid over cylinder/plate along with impacts of thermophoresis and Brownian motion effects. Also, the effects of exponential thermal sink/source, bioconvection, and motile microorganisms are taken.Methodology/ApproachThe resulting non-linear equations (PDEs) are reformed into nonlinear ODEs by using appropriate similarity variables. The resultant non-linear (ODEs) were numerically evaluated by the use of the Bvp4c package in the mathematical solver MATLAB.FindingsThe numerical and graphical illustration regarding outcomes represents the performance of flow-involved physical parameters on velocity, temperature, concentration, and microorganism profiles. Additionally, the skin friction coefficient, local Nusselt number, local Sherwood number, and local microorganism density number are computed numerically for the current presented system. We noted that the velocity profile diminishes for the rising estimations of magnetic and mixed convection parameters. The Prandtl number corresponds with the declining performance of the temperature profile observed. The enhancement in the values of the Solutal Biot number and Brownian motion parameter increased in the concentration profile.OriginalityIn specific, this framework focuses on the rising heat transfer of Casson nanofluid with bioconvection by using a shooting mathematical model. The novel approach of the presented study is the use of motile microorganisms with exponential thermal sink/source in a Casson nano-fluid through a cylinder/plate. A presented study performed first time in the author’s opinion. Understanding the flow characteristics and behaviors of these nanofluids is crucial for the scientific community in the developing subject of nanofluids.  相似文献   

17.
A mathematical model describing the concentration polarization phenomenon during osmotic pressure controlled ultrafiltration is presented. Generalized integral and similarity solutions of the concentration profile in the mass transfer boundary layer are obtained. The parameters governing the shape of the concentration profile vary with time in case of a batch cell and axial distance in a cross flow cell. The model is used to predict the permeate flux and the solute rejection simultaneously during unstirred batch cell and cross flow UF. The results obtained by integral and similarity solutions are compared with the results of detailed numerical solution of the governing equations for both the systems. The predictions of permeate flux from the generalized integral method are also compared with some approximate solutions in order to assess the limitations of the various approximations. UF experiments were performed with Dextran (T-20) in cross flow system and with PEG-6000 and Dextran (T-40 and T-20) in unstirred batch cell. Predictions of the model are in remarkably good agreement with detailed simulation as well as experimental results. Moreover, the integral solution can also account for the variation of diffusivity with solute concentration. Comparisons show that (a) while the generalized integral method is much simpler than the detailed numerical solutions, it is much more general and accurate than other analytical and semi-analytical solutions, and, (b) the proposed solution predicts the osmotic pressure controlled flux decline accurately over a wide range of operating conditions. The expression for gel layer governed UF (constant membrane surface concentration) is found to be an asymptotic case of the present solution.  相似文献   

18.

This research article investigates that how heat flow changes versus temperature or time on the rheology of magnetohydrodynamic Brinkman fluid embedded in porous medium for the oscillations of heated plate. A fractional approach namely Caputo–Fabrizio fractional operator is applied for developing the governing partial differential equations of Brinkman fluid flow. The fractional governing partial differential equations have been modeled for temperature distribution, mass concentration and velocity field along with imposed initial and boundary conditions. The solutions are obtained by integral transforms and presented in special and elementary functions. In the limiting sense, the analytical solutions are particularized in the presence and absence of heat and mass transfer, magnetic field and porous medium. The parametric graphs have been depicted for the influence of different embedded rheological parameters on fluid flow. The results show few interesting differences and similarities by comparative analysis for fractional and ordinary Brinkman fluid flow, such as physically higher Prandtl (Pr) number that leads to decay thermal diffusivity which results in the reduction in thermal field; this means that better quality of production can be achieved through proper choice of Prandtl (Pr) and Schmidt (Sc) numbers.

  相似文献   

19.
It is shown that a number of systematic errors must be considered when performing heat measurements by flow microcalorimetry because the nature of the flow technique is such that substantial heat loss can be incurred. The conventional procedure of electrical calibration is found to be an inadequate correction parameter. Equations to account for the effects of thermal disequilibrium are derived from the basic principles incorporated in the Tian equation. The predicted relationships are tested by simple experiments and shown to be correct. The various correction parameters are measured for a wide range of flow rate and heat input conditions. A composite equation is presented which allows for the correction of heat loss while deconvoluting electrical heat from a heat of reaction. The total heat output rate from a flow calorimeter can be calculated for most experimental conditions by reference to this equation and to the tabulated correction values.  相似文献   

20.
Summary The various techniques and methodologies of thermal conductivity measurement have been conventionally based on the determination of the rate of directional heat flow through a material having a unit temperature differential between its opposing faces. The constancy of this rate depends on the material density, its thermal resistance and the heat flow path itself. The last of these variables contributes most significantly to the true value of steady-state axial and radial heat dissipation depending on the magnitude of transient thermal diffusivity along these directions. The purpose of this paper is to exemplify the above features by defined parameters of heat flow measurement by existing methodologies. No new method is proposed here. Importantly, the relationship between the rate of heat transfer, total heat transferred and thermal conductivity at a given temperature under steady-state conditions for a fixed heat flow path will be illustrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号