首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study is aimed at investigating the potential of transition metals (Cu, Ag, Au) doped gallium nitride nanotubes (GaNNTs) as sensor materials for the enhanced detection of hexabromodiphenyl ether (HBDE) an emerging organic pollutant that has been linked to several health problems, including developmental and neurological disorders, hormonal imbalances, and cancer. Using the density functional theory (DFT) method at the B3LYP-D3(BJ)/def2SVP level of theory, the potential of pristine and metal (Ag, Au, and Cu) doped gallium nitride (GaNNT) nanotube to sense and detect HBDE was evaluated. The interaction of HBDE on the surface was evaluated at two sites, the bromine (Br) and oxygen (O) sites to evaluate the best conformation adsorption. The results showed that the Br site was the preferred sites of adsorption with binding energies of −43.926 kcal/mol, −43.926 kcal/mol, −43.926 kcal/mol and −31.376 kcal/mol for HBDE_Br_Ag@GaNNT, HBDE_Br_Au@GaNNT, HBDE_Br_Cu@GaNNT and HBDE_Br_@GaNNT respectively. The mechanism of surface adsorption was found to be chemisorption and doping of GaNNT surface with metals was found to enhance the conductivity and sensitivity of the surface towards the adsorbent. The result of the thermodynamic assay also affirmed the spontaneous and favorable nature of the surface and adsorbent. Overall, the various analysis considered so far, points that pristine and metal functionalized GaNNT could be used as potential materials to sense HBDE.  相似文献   

2.
《印度化学会志》2023,100(1):100812
Predicting adsorption behavior of the Triacanthine (TRC) anticancer drug on the surface of B12N12 nano-cage was investigated using DFT and TD-DFT methods by B3LYP/6-311+G(d) level in the water solution. The adsorption energies of the TRC-B12N12 complexes (A-C) were shown that the adsorption process is exothermic. The UV/Vis absorption and IR spectra analysis were calculated to investigate the changes happening in adsorption of TRC over nano-cage. According to the results, the interaction of the TRC drug from the N9 atom on the B12N12 nano-cage (model A) has the most chemical stability rather than models B and C. Based on NBO analysis, the charge transfer process has happened between the TRC drug and B12N12 nano-cage. Recovery time, charge difference (ΔN), and ELF analysis were calculated. It was understood that the B12N12 nano-cage can be a good carrier for the delivery of TRC anticancer medicine.  相似文献   

3.
Adsorption of SO2 and O3 molecules on pristine boron nitride (B12N12) and Ni-decorated B12N12 nano-cages has been systemically investigated through density functional theory (DFT) methods. Adsorption energies (thermodynamics), bond distances, charge analysis, dipole moments, orbital analysis and density of states are calculated by van der Waals DFT method (MPW1PW91) functional. The adsorption energies of O3 and SO2 on pristine B12N12 are about −143.8 and −14.0 kJ mol−1, respectively. The interaction energies of O3 and SO2 with pristine B12N12 are indicative of chemisorption and physisorption, respectively. Ni-decorated B12N12 (Ni@BN) enhances adsorption of both O3 and SO2 species. The interaction energies for adsorption of SO2 are about −166 and −277 kJ mol−1 whereas the corresponding energies for O3 are −362 and −396 kJ mol−1 for configuration A and B, respectively. These observations show that functionalized B12N12 are highly sensitive toward SO2 and O3 molecules.  相似文献   

4.
《印度化学会志》2023,100(3):100949
Covalent organic frameworks (COFs), an emerging class of crystalline polymeric materials, have garnered growing interest due to their ideal chemical and thermal stability and ordered microporous architectures, which make them effective agents for selective CH4/CO2 separation. In this work, adsorption and separation of methane and carbon dioxide molecules on the two-dimensional pristine and Mg-decorated COF-5 (MgCOF-5) was investigated using density functional theory, employing B3LYP. Both CH4 and CO2 molecules were found to weakly adsorbed through van der Waals interactions to the bare sheet via physisorption, releasing energies ranging from -3.8 to -5.6 and -8.7 to 12.8, respectively and the sheet's electrical characteristics don't alter all that much. To overcome this weak selectivity/sensitivity, multiple Mg atoms were decorated atop aromatic rings of COF-5. Our results show that up to four CO2 molecules can be adsorbed on each Mg atom exothermically, whereas Ead of CH4 is near zero so the theoretical CO2 capacity of a full Mg-covered sheet is 0.51 gCO2/g MgCOF-5. Also, the decorating of Mg atoms on the surface of COF-5 induces certain changes in the sheet's electrical characteristics and that the sheet's Eg changes up to 80% following the adsorption of several CO2 molecules, making it a potential candidate for CO2 detection.  相似文献   

5.
Density functional theory (DFT) calculations were applied at the M05-2X/6-311++G(d,p) level of the theory to investigate the interaction of the B12N12 nanocage (BN) and alkali metal ions (Li+, Na+, K+, Rb+ and Cs+) in the gas phase and in water. On the basis of the results, BN nanocage is able to form a selective complex with Li+. Water, as a solvent, reduces the stability of the metal ion-BN complexes in comparison with the gas phase. Natural bond orbital (NBO) and quantum theory of atoms in molecules (QTAIM) analyses, reveal that the electrostatic interaction between the BN and metal ions can be considered as the driving force for complex formation in which the role of water is of significance. Density of states (DOSs) analysis of the BN nanocage structure in the presence of different metal ions showed a noticeable change in the frontier orbitals, especially in the gas phase, and Fermi level shifting toward the lower values.  相似文献   

6.
Russian Journal of Applied Chemistry - The adsorption of the 2,3,7,8-tetrachlorodibenzodioxin (TCDD) molecule on the B12N12 nanocage (B12N12-NC) was studied by M06-2X/6-31++G** method. There are...  相似文献   

7.
Structural Chemistry - In the current work, the adsorption of Zolinza (ZOL) drug on B12N12 and Al12N12 nanocages was investigated using density functional theory (DFT) and time-dependent DFT...  相似文献   

8.
DFT calculations were performed to investigation of the influence of doping three atoms of aluminum on the electronic properties of the (4,0) zigzag boron nitride nanotube (BNNT). Also, adsorption properties of nitrosamine (NA) and thionitrosamine (TNA) molecules as carcinogen agents onto BN and BAl3N nanotubes were studied. The results show that the B3AlN nanotube is the most energetically favorable candidates for adsorption of these molecules. Also, B(B3Al)NNT/TNA complexes are more stable than B(B3Al)NNT/NA complexes. The HOMO–LUMO gap, electronic chemical potential (μ), hardness (?), softness (S), the maximum amount of electronic charge (ΔNmax) and electrophilicity index (ω) for monomers and complexes in the gas and polar solvent phases were calculated. The results show that the conductivity and reactivity of BNNT increase by doping Al atoms instead of B atoms. Also, the interaction of NA and TNA molecules with BN and BAl3N nanotubes results in significant changes in the electronic properties of nanotubes. Based on the natural bond orbital (NBO) analysis, in all complexes charge transfer occurs from NA and TNA molecules to nanotubes. Theory of atoms in molecules (AIM) was applied to characterize the nature of interactions in nanotubes. It is predicted that, BN and B3AlN nanotubes can be used to as sensor for detection of NA and TNA molecules.  相似文献   

9.
Structural Chemistry - In this work, dissociative adsorption of methanimine (CH2NH) on the surface of B12N12 and Al12N12 nanoclusters is studied at wB97XD/6-31G(d) computational level. The results...  相似文献   

10.
The adsorption of penicillamine (PCA) on pure B12N12 and B12CaN12 nanocages in aqueous and chloroform solvents has been evaluated using density functional theory (DFT) calculations. The interaction of PCA on B12N12 nanocages is chemisorption through its four nucleophilic sites: amine, carbonyl, hydroxyl and thiol. The most stable adsorption configuration was achieved when zwitterionic PCA adsorbs via its carbonyl group in water with value of ?1.723 eV, in contrast, when neutral PCA adsorbs via its amine group in chloroform with value of ?1.68 eV. Intercalated calcium ion within B12N12 nanocage (B12CaN12) was shown to attract PCA onto nanocage surface, resulting in higher solubility and adsorption energy after their complexation in water and chloroform. The adsorption of multiple PCA molecules from their amine and carbonyl groups on pure and B12CaN12 nanocages were also evaluated where two and three molecules can be chemisorbed on boron atoms of the nanocage surfaces with the adsorption energy per PCA reduces slightly with the increasing the amount of drugs due to the curvature effects. Molecular docking study indicates that PCA from its NH2 group on B12CaN12 nanocage has the best binding affinity and inhibition potential of tumor necrosis factor-alpha (TNF-α) and Interleukin-1 (IL-1) receptors as compared with the other adsorption systems. Molecular docking and ADMET analysis displayed that the chosen compounds pass Lipinski Rule and have appropriate pharmacokinetic features suitable as models for developing anti-inflammatory agents.  相似文献   

11.
Journal of Solid State Electrochemistry - The rising costs of lithium and other versatile metals which are of electrochemical importance have sprouted concerns in the electrochemical world. Sodium...  相似文献   

12.
Reaction mechanisms between MH (M=B, Al) and the H2S molecule have been theoretically studied. The G3 ab initio and DFT calculations demonstrate that only one stable addition complex (HM:SH2, M=B, Al) can be formed, and that, starting from the addition complex (HM:SH2) two parallel reaction channels have been found: one is an addition reaction to give H2MSH via the three‐membered ring transition state (TS), and the other is a dehydrogenation reaction to give MSH+H2 via the four‐membered ring TS. Thermodynamics and Eyring transition state theory (TST) with the Wigner correction are also used to compute the thermodynamic functions, the equilibrium constants, A factors, and the rate constants of these reaction channels at 300–1500 K. The calculated results predict that the product H2BSH in the system of BH+H2S and the product AlSH+H2 in the system of AlH+H2S will be mainly observed. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem, 2001  相似文献   

13.
A new calorimeter designed for simultaneous measurements of heats and isotherms of gas adsorption and desorption systems is presented. It consists of a volumetric/manometric gas adsorption instrument, the adsorption vessel of which is placed within a second vessel filled with inert gas. This gas acts as a sensor, as not only its temperature but also its pressure is increased if heat is released from the adsorption vessel via the sensor gas to its thermostated surroundings. Indeed, the time integral of the sensor gas pressure signal turned out to be strongly related to the total heat released from the adsorption vessel.A basic theoretical equation of the measurement procedure is given. Results of numerous calibration measurements are presented. The question of what type and amount of sensor gas should be used to achieve high sensitivity of the instrument is discussed.Two examples of measurements of heats of adsorption and adsorption isotherms are given, namely adsorption of N2 on alumina oxide (CRM-BAM-PM-104) at 77 K and CO2 on zeolite Na13X and wessalite DAY both at 298 K.  相似文献   

14.
In this study, the adsorption of Sn atom at various sites on the MgO(100) surface was characterized using a theoretical approach based on density functional theory calculations. Both regular adsorption centers (O2? and Mg2+) and defects (such as neutral and charged O and Mg vacancies) were considered. Several key parameters for these sites with the adsorbed Sn atom were determined to provide its geometric, energetic, and electronic characterization. The interaction between Sn and the Mg vacancy sites is very strong and is associated with a relatively small distance of the adsorbed Sn atom from the surface and with a large electronic charge transfer from Sn to the surface. A much smaller strength of Sn atom adsorption is observed for the O vacancies and regular sites. Among them, the Fs0 center binds the Sn atom strongest and, in consequence, this atom acquires a significant amount of electronic charge.  相似文献   

15.
The adsorption and decomposition of acetonitrile on the TiO2 (110) surface have been investigated with first principles calculations. Our results reveal that both C?N and C? C bonds of acetonitrile become weakened after adsorption. Acetonitrile behaves as an electron donor, and electrons transfer from acetonitrile to substrate is obvious. The reaction mechanism of further decomposition of acetonitrile on TiO2 (110) surface is also investigated, and the result shows that acetonitrile can decompose into CH3 and CN fragments and form OCH3 and NCO groups on the TiO2 (110) surface, which consists with the experimental results. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

16.
Heteroatom M-ZSM-12 zeolites(M=B, Al, Ge, Ga, Fe) are hydrothermally synthesized and it is proved that the heteroatom M is involved in the framework of synthesized molecular sieves by means of XRD, IR spectra. The results of adsorption and diffusion experiments indicate that the heteroatom M modifies the pore volume, specific surface area, and the channel of ZSM-12 molecular sieves.  相似文献   

17.
The nature of hexaethylene glycol mono-n-tetradecyl ether (C(14)EO(6)) layers adsorbed onto different model surfaces was systematically investigated by means of QCM-D (quartz crystal microbalance-dissipation) and ellipsometry. The amount of non-ionic surfactant adsorbed is determined both at hydrophilic and hydrophobic surfaces. In particular, the substrates employed were hydrophilic silica, hydrophobized silica (using dimethyldichlorosilane), and hydrophobized gold surfaces (using 10-thiodecane and 16-thiohexadecane). It was shown that the frequency shift obtained from the QCM-D experiments results in an overestimation of the adsorbed mass. This is attributed to two different effects, viz. water that is coupled to the adsorbed layer due to hydration of the polar region of the surfactant and second water that for other reasons is trapped within the adsorbed layer. Furthermore, from the ellipsometry data the adsorbed layer thickness is determined. By combining the thickness information and the dissipation parameter (obtained from the QCM-D experiments), we note that the dissipation parameter is insufficient in describing the viscoelastic character of thin surfactant films.  相似文献   

18.
《印度化学会志》2022,99(11):100749
Porous metal organic frameworks (MOFs) has shown large surface area and high micropore volume making it a promising electrode material for sensing devices. Adsorption and electronic sensitivity of copper-based open metal sites paddlewheel (Cu2(HCOO)4) towards polar, moderately polar, and non-polar organic solvent vapors (OSVs) were was investigated using density functional theory, employing B3LYP. The most stable adsorption structures were those with the OSVs interacting with the metal node of PW. Based on calculations, the adsorption energy of molecules is in the range of ?7.8 to ?24.8 kcal/mol, ?9.2 to ?25.7 kcal/mol, and ?6.6 to ?10.9 kcal/mol for polar, moderately polar, and non-polar OSVs, respectively. Also sensing activities of PW were studied from three points of view band gap changing, sensing factor, and work function changes. From the standpoint of conductivity changing, Cu-PW has (i) low sensitivity to acetonitrile, acetone, dimethyl formamide, dimethyl ether, benzene, and ethanol; (ii) moderate sensitivity to toluene, and (iii) strong sensitivity to THF detection so that its HOMO/LUMO gap of the PW is significantly decreased from 1.63 to 0.97 eV which may increase the electrical conductivity, sensing factor is 1.4 * 1011, and work function changing is 0.45 eV after THF adsorption. Thus, we suggest that Cu-PW may be used as a highly sensitive/selective and multi-time reusable sensor material for THF detection.  相似文献   

19.
A very recent laser ablation‐molecular beam experiment shows that an Al+ ion can react with a single methylamine (MA, CH3NH2) or dimethylamine (DMA, (CH3)2NH) molecule to form a 1:1 ion–molecule complex Al+[CH3NH2] or Al+[(CH3)2NH)], whereas a dehydrogenated complex ion Cu+[CH3N] or Cu+[C2H5N] is detected, respectively, in the similar reaction for a Cu+ ion. Here, we show a comparative density functional theory study for the reactivities of the Al+ and Cu+ ions toward MA and DMA to reveal the intrinsic mechanism. It is found that the interactions of the Al+ ion with MA and DMA are mostly electrostatic, leading to the direct ion–molecule complexes, Al+? NH2CH3 and Al+? NH( CH3)2, in contrast to the non‐negligible covalent character in the corresponding Cu+‐containing complexes, Cu+? NH2CH3 and Cu+? NH( CH3)2. The general dehydrogenation mechanism for MA and DMA promoted by the Cu+ ion has been shown, and the preponderant structures contributing to the mass spectra of the product ions Cu+[CH3N] and Cu+[C2H5N] are rationalized as Cu+? NHCH2 and Cu+? N( CH2)( CH3). The presumed dehydrogenation reactions are also discussed for the Al+‐containing systems. However, the involved barriers are found to be too high to be overcome at low energy conditions. These results have rationalized all the experimental observations well. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

20.
The use of cheap and eco friendly adsorbents prepared from freely and abundantly available Acacia nilotica leaves have been investigated by batch methods. Microwave treated A. nilotica leaves (MVM) are more effective than chemically treated A. nilotica leaves (CVM) for the removal of rhodamine B (RH B) from aqueous solution. The effect of initial pH, contact time and initial dye concentration of RH B onto CVM and MVM has been investigated. The applicability of the linear form of Langmuir model to CVM and MVM was proved by the high correlation coefficients R2 = 0.9413 and 0.9681 for RH B adsorption. The R2 values were greater than 0.994 for all RH B concentrations, which indicates the applicability of the pseudo-second-order kinetic model. The recycling ability of MVM is greater than CVM. The preparation of MVM does not require an additional chemical treatment step and it attains rapid equilibrium. Hence it is agreeing with the principles of green chemistry and less time is required to possess high adsorption of RH B. Therefore, the eco friendly adsorbent MVM is expected to be environmentally and economically feasible for the removal of RH B from aqueous solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号