首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Recently, the enhancing of bulk metals optical absorption with focused femtosecond pulses was demonstrated. This absorption enhancement is caused by different nano- and micro-structures which are formed during laser ablation with ultrashort pulses. In this paper we study the evolution of the surface structures using interferometric ablation and compare it to normal fs-ablation. Previously we have shown that interferometric femtosecond ablation is an efficient method to fabricate absorbing metal surfaces. In this study we ablated large areas of hole-array structures with different pulse numbers in polished stainless steel and copper samples. The evolution of surface morphology and the depth of the holes for these structured surfaces are presented. In addition, the reflectance of laser generated surface structures are measured at the wavelength range of 200–2300 nm using a standard spectrophotometer.  相似文献   

2.
We report on the fabrication of surface nanoparticles and micro/nanograting structures on bulk pure aluminum in air using a 150 fs, 775 nm femtosecond laser. We investigate the size of the generated surface nanoparticles under irradiation with different femtosecond laser pulses. Smaller nanoparticles can be induced by a larger number of laser pulses and a lower laser fluence. In addition, we observe the formation of micro/nanogratings when the laser focus is scanned across a pure aluminum surface in air. We obtain micro- and nano-grating composite structures on a pure aluminum surface by adjusting the laser fluence and scan velocity. Femtosecond laser surface ablation of bulk pure aluminum in air is potentially a promising technique for efficient fabrication of surface nanostructures.  相似文献   

3.
Nd:YAG纳秒激光诱导硅表面微结构的演化   总被引:2,自引:0,他引:2       下载免费PDF全文
利用Nd:YAG纳秒激光(波长为532和355 nm)对单晶硅在真空中进行了累积脉冲辐照,研究了表面微结构的演化情况.在激光辐照的初始阶段,532和355 nm激光脉冲均在硅表面诱导出了波纹结构,后者辐照硅表面后形成了近似同心但稍显混乱的环形波纹结构.随着脉冲数的增加,波纹结构逐渐演化为一种类似珠形的凹凸结构,最后形成准规则排列的微米量级锥形结构,该微结构的生长依赖于表面张力波和结构自组织.分析发现,形成的交叉环形结构主要是在355 nm激光辐照硅的过程中,表面张力波导致波纹结构部分叠加的结果.  相似文献   

4.
We report the deposition of thin films of silver (Ag) nanoparticles by pulsed laser ablation in vacuum using the third line (355 nm) of a YAG:Nd laser. The nanostructure and/or morphology of the films was investigated as a function of the number of ablation pulses, by means of transmission electron microscopy and atomic force microscopy. Our results show that films deposited with a small number of ablation pulses (500 or less), are not continuous, but formed of isolated nearly spherical Ag nanoparticles with diameters in the range from 1 nm to 8 nm. The effect of increasing the number of pulses by one order of magnitude (5000) is to increase the mean diameter of the globular nanoparticles and also the Ag areal density. Further increase of the number of pulses, up to 10,000, produces the formation of larger and anisotropic nanoparticles, and for 15,000 pulses, quasi-percolated Ag films are obtained. The presence of Ag nanoparticles in the films was also evidenced from the appearance of a strong optical absorption band associated with surface plasmon resonance. This band was widened and its peak shifted from 425 nm to 700 nm as the number of laser pulses was increased from 500 to 15,000.  相似文献   

5.
Ablation of submicron structures on copper and silicon by short ultraviolet laser pulses (0.5–50 ps, 248 nm) is presented. Features like periodic line structures with a line-spacing below 400 nm, and holes with characteristic sizes well below 1 µm are produced on the sample surface by single laser shot exposure. The structures are projection printed by a Schwarzschild-objective (N.A.=0.4) in air environment. The morphology of ablation sites made with different pulse durations (0.5 ps, 5 ps, 50 ps) is discussed in terms of thermal diffusion effects.  相似文献   

6.
Huang M  Zhao F  Cheng Y  Xu Z 《Optics letters》2012,37(4):677-679
By micro-Raman spectroscopy, we show that the structured surfaces of highly oriented pyrolytic graphite and diamond induced by 800 nm, 125 fs or 532 nm, 30 ps laser pulses are capped by thin amorphous carbon layers. Based on the results, we propose that for multiphoton ablation the thin amorphous layer with a reduced bandgap can facilitate surface ionization, raise free electron density, bring on plasmonic effects, and thus promote the growth of subwavelength structures. Therefore, concerning multipulse laser ablation of wide bandgap materials, we should take into account the effects of the superficial amorphous layer produced by preceding pulses instead of the intrinsic surface.  相似文献   

7.
Fang HH  Ding R  Lu SY  Wang L  Feng J  Chen QD  Sun HB 《Optics letters》2012,37(4):686-688
Two-beam interference ablation of 1,4-Bis(4-methylstyryl)benzene organic crystal by short laser pulses (10 ns, 355 nm) is presented. The influence of laser fluence, interference period, and pulse number on the morphology have been studied. The morphology is closely associated with the molecular interactions in the crystals, and it could be well controlled by adjusting the laser fluence and pulses number. Through interference ablating the crystals with high fluence pulses, and then treated with low fluence laser pulses, grating structures with smooth surface could be fabricated without any additional process.  相似文献   

8.
The dependence of the ablation rate of aluminium on the fluence of nanosecond laser pulses with wavelengths of 532 nm and respectively 1064 nm is investigated in atmospheric air. The fluence of the pulses is varied by changing the diameter of the irradiated area at the target surface, and the wavelength is varied by using the fundamental and the second harmonic of a Q-switched Nd-YAG laser system. The results indicate an approximately logarithmic increase of the ablation rate with the fluence for ablation rates smaller than ∼6 μm/pulse at 532 nm, and 0.3 μm/pulse at 1064 nm wavelength. The significantly smaller ablation rate at 1064 nm is due to the small optical absorptivity, the strong oxidation of the aluminium target, and to the strong attenuation of the pulses into the plasma plume at this wavelength. A jump of the ablation rate is observed at the fluence threshold value, which is ∼50 J/cm2 for the second harmonic, and ∼15 J/cm2 for the fundamental pulses. Further increasing the fluence leads to a steep increase of the ablation rate at both wavelengths, the increase of the ablation rate being approximately exponential in the case of visible pulses. The jump of the ablation rate at the threshold fluence value is due to the transition from a normal vaporization regime to a phase explosion regime, and to the change of the dimensionality of the hydrodynamics of the plasma-plume.   相似文献   

9.
采用了不同能量的单脉冲和多脉冲飞秒激光对LiNbO3晶体进行烧蚀,并刻蚀了表面衍射型光栅.通过扫描电镜和原子力显微镜观察了烧蚀点的形貌特征,首次发现利用单束飞秒激光脉冲对LiNbO3晶体烧蚀,可以得到超衍射极限的烧蚀点,当聚焦光斑直径约为2μm、能量为170nJ的单脉冲飞秒激光作用时,烧蚀点的直径约为400nm,100nJ,17个脉冲作用时烧蚀点的直径约为800nm.同时可以观察到在能量较低的多脉冲飞秒激光作用下, LiNbO3晶体呈现出大约200nm周期性分布的波纹状结构.实验结果表明,选择合适参数的飞秒激光脉冲可以对LiNbO3晶体进行超衍射极限加工,这对于利用飞秒激光制作LiNbO3基质的微纳光电子器件有十分重要的意义.  相似文献   

10.
Surface structures and structural transformations are investigated upon femtosecond laser ablation (800 nm, 120 fs) from crystalline silicon (100) targets placed under ultra-high vacuum. After repetitive illumination with several thousand laser pulses at intensities below the single shot damage threshold, at normal incidence, the crater morphology indicates the development of periodic structures at the crater bottom, with the orientation depending on the laser beam polarization. Periods of 200 nm and 600–700 nm, respectively, are shorter than the laser wavelength and appear as a result of surface instability. The ablation dynamics monitored by time-of-flight mass spectrometry shows the emission of positive silicon ions and clusters with kinetic energies of about 7 eV. Raman spectroscopy reveals phase transformations in the irradiated spot from Si-I to the polymorphs Si-III, Si-IV, Si-XII, and amorphous silicon as well as a stable, uncommon phase of hexagonal Si-wurzite. PACS 61.80 Ba; 81.05 Cy; 82.80.Rt; 81.65.Cf; 78.30 Am  相似文献   

11.
The nanostructuring of dielectrics is a big challenge for laser patterning methods. In this study a novel laser structuring method for the fabrication of randomly distributed nanostructures, called laser-induced front side etching using in situ pre-structured metal layers (IPSM-LIFE), is presented. The pulsed laser irradiation of a thin metal film deposited onto a dielectric substrate with fluences below the ablation threshold results in the formation of randomly distributed metal structures by self-assembly processes. Further pulsed laser irradiation of these metal structures with higher or equal laser fluences causes the formation of complex patterns at the surface of the dielectric due to localized ablation and melting processes of the dielectric surface induced by the absorption of the laser energy by the metal structures and the local energy transfer into the dielectric surface. The pattern formation observed in the film and the dielectrics substrate after irradiation of 10 nm chromium layers on fused silica, with laser pulses (Δt p =25 ns, λ=248 nm), was studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Different features with a lateral size down to a few tens of nanometers, like concentric ring patterns, donut-like structures, and bar patterns were observed at the dielectric.  相似文献   

12.
Femtosecond laser (180 fs, 775 nm, 1 kHz) ablation characteristics of the nickel-based superalloy C263 are investigated. The single pulse ablation threshold is measured to be 0.26±0.03 J/cm2 and the incubation parameter ξ=0.72±0.03 by also measuring the dependence of ablation threshold on the number of laser pulses. The ablation rate exhibits two logarithmic dependencies on fluence corresponding to ablation determined by the optical penetration depth at fluences below ∼5 J/cm2 (for single pulse) and by the electron thermal diffusion length above that fluence. The central surface morphology of ablated craters (dimples) with laser fluence and number of laser pulses shows the development of several kinds of periodic structures (ripples) with different periodicities as well as the formation of resolidified material and holes at the centre of the ablated crater at high fluences. The debris produced during ablation consists of crystalline C263 oxidized nanoparticles with diameters of ∼2–20 nm (for F=9.6 J/cm2). The mechanisms involved in femtosecond laser microprocessing of the superalloy C263 as well as in the synthesis of C263 nanoparticles are elucidated and discussed in terms of the properties of the material.  相似文献   

13.
The ablation process of thin copper films on fused silica by picosecond laser pulses is investigated. The ablation area is characterized using optical and scanning electron microscopy. The single-shot ablation threshold fluence for 40 ps laser pulses at 1053 nm has been determinated toF thres = 172 mJ/cm2. The ablation rate per pulse is measured as a function of intensity in the range of 5 × 109 to 2 × 1011 W/cm2 and changes from 80 to 250 nm with increasing intensity. The experimental ablation rate per pulse is compared to heat-flow calculations based on the two-temperature model for ultrafast laser heating. Possible applications of picosecond laser radiation for microstructuring of different materials are discussed.  相似文献   

14.
Interdiffusion phenomena, thermal damage and ablation of W/Si and Si/W bilayers and multilayers under XeCl-excimer laser (=308 nm) irradiation at fluences of 0.15, 0.3 and 0.6 J/cm2 were studied. Samples were prepared by UHV e-beam evaporation onto oxidized Si. The thickness of W and Si layers and the total thickness of the structures were 1–20 nm and 40–100 nm, respectively. 1 to 300 laser pulses were directed to the same irradiation site. At 0.6 J/cm2 the samples were damaged even by a single laser pulse. At 0.3 J/cm2 WSi2 silicide formation, surface roughening and ablation were observed. The threshold for significant changes depends on the number of pulses: it was between 3–10 pulses and 10–30 pulses for bilayers with W and Si surfaces, respectively, and more than 100 pulses for multilayers with the same total thickness of tungsten. At 0.15 J/cm2 the periodicity of the multilayers was preserved. Temperature profiles in layered structures were obtained by numerical simulations. The observed differences of the resistance of various bilayers and multilayers against UV irradiation are discussed.  相似文献   

15.
 开展了脉宽为40 fs的不同数量激光脉冲对锗材料的烧蚀效应实验,采用扫描电镜、激光共聚焦显微镜等方法对不同数量的飞秒激光脉冲作用下锗材料表面烧蚀区进行了检测,并对作用后材料烧蚀形貌演化规律进行了分析,初步分析了锗材料烧蚀区周围形成的不同环区的形貌特征及成因,对各环区烧蚀形貌特征随激光作用脉冲数的增加而产生的形貌演化过程进行了观测。并给出单脉冲飞秒激光对锗材料的烧蚀阈值为1.2 J·cm-2,采用激光共聚焦显微镜测得该阈值条件下单个飞秒激光脉冲对锗材料的烧蚀深度约为150 nm。  相似文献   

16.
The conditions for the scaled synthesis of single wall carbon nanotubes (SWNTs) and single wall carbon nanohorns (SWNHs) by laser vaporization at high temperatures are investigated and compared using in situ diagnostics. An industrial Nd:YAG laser (600 W, 1–500 Hz repetition rate) with tunable pulse widths (0.5–50 ms) is utilized to explore conditions for high-yield production. High-speed videography (50000 frames/s) of the laser plume and pyrometry of the target surface are correlated with ex situ high resolution transmission electron microscopy analysis of the products for pure carbon targets and carbon/catalyst targets to understand the effects of the processing conditions on the resulting nanostructures. Carbon is shown to self-assemble into single-wall nanohorn structures at rates of ∼1 nm/ms, which is comparable to the catalyst-assisted SWNT growth rates. Two regimes of laser ablation, cumulative ablation by multiple pulses and continuous ablation by individual pulses, were explored. Cumulative ablation with spatially overlapping 0.5-ms pulses is favorable for the high yield and production rate of SWNTs at ∼6 g/h while continuous ablation by individual long laser pulses (∼20 ms) at high temperatures results in the highest yield of SWNHs at ∼10 g/h. Adjustment of the laser pulse width is shown to control SWNH morphology.  相似文献   

17.
飞秒激光在空气和水中对硅片烧蚀加工的实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
王锐  杨建军  梁春永  王洪水  韩伟  杨阳 《物理学报》2009,58(8):5429-5435
采用1 kHz,800 nm,50 fs—24 ps的钛宝石激光脉冲对单晶硅样品在空气和水溶液环境中的烧蚀加工特性进行了研究.实验观察到了超短脉冲激光在空气氛围中烧蚀形成的双层环状结构,分析揭示了加工区域中心和边缘的烧蚀物理机制分别为热熔化和库仑爆炸,并测量了双层环状结构半径随入射激光能量、脉冲数及持续时间等的变化关系,结果表明获取较大深-宽比的加工效果需选择小能量脉冲激光的多次作用.在水溶液环境中,实验发现飞秒激光在样品表面诱导产生了亚微米量级的多孔状结构,而皮秒激光则更容易实现对硅表面的非热性去除.这是由于激光诱导的光机械应力和空泡效应随脉冲宽度变大而增强所致,在实验上确立了区分这两种不同加工状态的临界脉冲宽度. 关键词: 飞秒激光 硅片 激光加工  相似文献   

18.
We present two sets of experimental results on the ablation-rate decrease with increase of the number of consecutive laser pulses hitting the same spot on the target surface. We have studied laser ablation of a carbon target with nanosecond pulses in two different interaction regimes: one with a XeCl laser (λ=308 nm) and the other with a Nd:YAG laser (λ=1064 nm), in both cases at the intensity ∼5×108 W/cm2 Two different mechanisms were found to be responsible for the ablation-rate decrease; they are directly related to the two different laser–matter interaction regimes. The UV-laser interaction is in the regime of transparent vapour (surface absorption). The increase of the neutral vapour density in the crater produced by the preceding laser pulses is the main reason for the decrease of ablation rate. With the IR laser each single laser pulse interacts with a partially ionised plume. With increase of the number of pulses hitting the same spot on the target surface, the laser–matter interaction regime gradually changes from the near-surface absorption to the volume absorption, resulting in the decrease in absorption in the target and thus in the decrease in the ablation rate. The change in the evaporation rate was considered for both vacuum and reactive-gas environments. Received: 21 February 2001 / Accepted: 26 February 2001 / Published online: 23 May 2001  相似文献   

19.
Time-resolved studies on the ablation of metals (Ni, Ag, Au, Cu) and semiconductors (Ge, Si) by short UV laser pulses (500 fs at 248 nm) are presented. Submicron-period grating structures were created on the sample surface by UV pump pulses and the diffracted signals (0th, 1st, 2nd order) of a weak probe pulse (500 fs at 496 nm) were recorded as a function of pump-probe delay. These signals provide direct information about electronic excitations, phase transitions and the onset of material removal.  相似文献   

20.
Experiments on the ablation of polymethylmethacrylate (PMMA) with 300 fs uv excimer laser pulses at 248 nm are reported for the first time. With these ultrashort pulses, ablation can be done at fluences up to five times lower than the threshold fluence for 16 ns ablation of PMMA, and the surface morphology is improved, also for several other materials. A model for ablation is proposed, assuming a non-constant absorption coefficient eff depending on the degree of incubation of the irradiated material and the intensity of the incoming excimer laser pulse. The agreement between our model and our experimental observations is excellent for 16 ns excimer laser pulses, also predicting perfectly the shape of a pulse transmitted through a thin PMMA sample under high fluence irradiation. Qualitative agreement for 300 fs excimer laser pulses is obtained so far.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号