首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用基于密度泛函的第一性原理方法, 同时结合Nudged Elastic Band方法, 系统研究了H2分子和H原子在Mg(0001)表面的吸附过程. 给出了H2分子的解离路径和势垒, 结果表明H2分子的吸附过程中仅存在物理吸附; 在给出H原子在Mg(0001)表面的吸附势能面的基础上, 进一步研究了H原子在Mg(0001)表面及体内的扩散过程. 计算发现, Mg(0001) slab存在表面效应, 且对H原子的表面扩散影响较明显. 在此基础上, 通过比较解离、扩散和放氢环节的激活能数据, 为H2分子的解离和氢化物的放氢过程是速控步骤这一结论提供了理论支持.  相似文献   

2.
It is well-known, both theoretically and experimentally, that alloying MgH(2) with transition elements can significantly improve the thermodynamic and kinetic properties for H(2) desorption, as well as the H(2) intake by Mg bulk. Here, we present a density functional theory investigation of hydrogen dissociation and surface diffusion over a Ni-doped surface and compare the findings to previously investigated Ti-doped Mg(0001) and pure Mg(0001) surfaces. Our results show that the energy barrier for hydrogen dissociation on the pure Mg(0001) surface is high, while it is small/null when NiTi are added to the surface as dopants. We find that the binding energy of the two H atoms near the dissociation site is high on Ti, effectively impeding diffusion away from the Ti site. By contrast, we find that on Ni, the energy barrier for diffusion is much reduced. Therefore, although both Ti and Ni promote H(2) dissociation, only Ni appears to be a good catalyst for Mg hydrogenation, allowing diffusion away from the catalytic sites. Experimental results corroborate these theoretical findings, i.e., faster hydrogenation of the Ni-doped Mg sample as opposed to the reference Mg- or Ti-doped Mg.  相似文献   

3.
Ab initio density functional theory (DFT) calculations are performed to explore possible catalytic effects on the dissociative chemisorption of hydrogen on a Mg(0001) surface when carbon is incorporated into Mg materials. The computational results imply that a C atom located initially on a Mg(0001) surface can migrate into the subsurface and occupy an fcc interstitial site, with charge transfer to the C atom from neighboring Mg atoms. The effect of subsurface C on the dissociation of H2 on the Mg(0001) surface is found to be relatively marginal: a perfect sublayer of interstitial C is calculated to lower the barrier by 0.16 eV compared with that on a pure Mg(0001) surface. Further calculations reveal, however, that sublayer C may have a significant effect in enhancing the diffusion of atomic hydrogen into the sublayers through fcc channels. This contributes new physical understanding toward rationalizing the experimentally observed improvement in absorption kinetics of H2 when graphite or single walled carbon nanotubes (SWCNT) are introduced into the Mg powder during ball milling.  相似文献   

4.
The hydrogenation kinetics of Mg is slow, impeding its application for mobile hydrogen storage. We demonstrate by ab initio density functional theory (DFT) calculations that the reaction path can be greatly modified by adding transition metal catalysts. Contrasting with Ti doping, a Pd dopant will result in a very small activation barrier for both dissociation of molecular hydrogen and diffusion of atomic H on the Mg surface. This new computational finding supports-for the first time by ab initio simulation-the proposed hydrogen spillover mechanism for rationalizing experimentally observed fast hydrogenation kinetics for Pd-capped Mg materials.  相似文献   

5.
In this paper, the dissociative chemisorption of hydrogen on both pure and Ti-incorporated Mg(0001) surfaces are studied by ab initio density functional theory (DFT) calculations. The calculated dissociation barrier of hydrogen molecule on a pure Mg(0001) surface (1.05 eV) is in good agreement with comparable theoretical studies. For the Ti-incorporated Mg(0001) surface, the activated barrier decreases to 0.103 eV due to the strong interaction between the molecular orbital of hydrogen and the d metal state of Ti. This could explain the experimentally observed improvement in absorption kinetics of hydrogen when transition metals have been introduced into the magnesium materials.  相似文献   

6.
The interaction of hydrogen (H) and a ZnO(0001)-O surface has been investigated using a temperature programmed desorption (TPD) technique. When the surface is exposed to atomic hydrogen below 400 K, hydrogen is adsorbed on the surface. As the hydrogen exposure increases, bulk diffusion of hydrogen takes place. The existence of surface and bulk hydrogen has been confirmed using X-ray photoelectron spectroscopy (XPS). When the ZnO surface dosed with hydrogen is heated, surface hydrogen is desorbed at 432 K and bulk hydrogen is evolved at ~539 K. Diffusion of hydrogen into the ZnO bulk is an activated process, and the activation energy is estimated to be 0.19 eV.  相似文献   

7.
为研究Mg2NiQ4(Q=H, D, T)体系的热力学氢同位素效应, 基于量子力学第一原理, 采用密度泛函与赝势平面波相结合的方法, 计算了Mg2NiQ6(Q=H, D, T)体系的声子色散谱, 利用声子色散谱得到了热力学函数. 利用文献报道的氢同位素气体分子的热力学数据, 采用热力学方法分析了Mg2Ni吸氢形成Mg2NiQ6的同位素效应. 研究结果表明, Mg2Ni吸氢的同位素效应主要是原子相对振动的频率不同导致的. CaF2结构的Mg2NiQ6的氢同位素效应随温度升高由负同位素效应转变为正同位素效应.  相似文献   

8.
Ab initio density functional theory (DFT) calculations are performed to study the adsorption of H2 molecules on a Ti-doped Mg(0001) surface. We find that two hydrogen molecules are able to dissociate on top of the Ti atom with very small activation barriers (0.103 and 0.145 eV for the first and second H2 molecules, respectively). Additionally, a molecular adsorption state of H2 above the Ti atom is observed for the first time and is attributed to the polarization of the H2 molecule by the Ti cation. Our results parallel recent findings for H2 adsorption on Ti-doped carbon nanotubes or fullerenes. They provide new insight into the preliminary stages of hydrogen adsorption onto Ti-incorporated Mg surfaces.  相似文献   

9.
The catalytic hydrogenation of CO(2) at the surface of a metal hydride and the corresponding surface segregation were investigated. The surface processes on Mg(2)NiH(4) were analyzed by in situ X-ray photoelectron spectroscopy (XPS) combined with thermal desorption spectroscopy (TDS) and mass spectrometry (MS), and time-of-flight secondary ion mass spectrometry (ToF-SIMS). CO(2) hydrogenation on the hydride surface during hydrogen desorption was analyzed by catalytic activity measurement with a flow reactor, a gas chromatograph (GC) and MS. We conclude that for the CO(2) methanation reaction, the dissociation of H(2) molecules at the surface is not the rate controlling step but the dissociative adsorption of CO(2) molecules on the hydride surface.  相似文献   

10.
用密度泛函理论研究了氢原子的污染对于Ru(0001)表面结构的影响. 通过PAW(projector-augmented wave)总能计算研究了p(1×1)、p(1×2)、(3^(1/2)×3^(1/2))R30°和p(2×2)等几种氢原子覆盖度下的吸附结构, 以及在上述结构下Ru(0001)面fcc(面心立方)格点和hcp(六方密堆)格点的氢原子吸附. 所得结果表明, 在p(1×1)-H、p(1×2)-H、(3^(1/2)×3^(1/2))R30°-H和p(2×2)-H几种H原子覆盖度下, 以p(1×1)-H结构单个氢原子吸附能为最大. 在p(1×1)-H吸附结构下,由于氢原子吸附导致的Ru(0001) 表面第一层Ru 原子收缩的理论计算数值分别为-1.11%(hcp 吸附)和-1.55%(fcc 吸附), 因此实际上最有可能的情况是两种吸附方式都有一定的几率. 而实验中观察到的“清洁”Ru(0001)表面实际上是有少量氢原子污染的表面. 不同覆盖度和氢分压下氢原子吸附的污染对Ru(0001)表面结构有极大的影响,其表面的各种特性都会随覆盖度的不同而产生相应的变化.  相似文献   

11.
Species desorbing from indium oxides under exposure to atomic hydrogen (H) were observed with a quadrupole mass spectrometer. The desorption of InOH was detected at a temperature as low as 410°C, which is in contrast with the fact that, with molecular hydrogen, a much higher temperature (850°C) was required to generate InOH. Upon the interruption of H generation, the InOH signal disappeared immediately, suggesting that H is involved in the reactions leading to InOH desorption. Relevance to the low-temperature cleaning of an InP surface with H is discussed.  相似文献   

12.
The interaction of atomic and molecular hydrogen with the Ag(111) surface is studied using periodic density functional total-energy calculations. This paper focuses on the site preference for adsorption, ordered structures, and energy barriers for H diffusion and H recombination. Chemisorbed H atoms are unstable with respect to the H(2) molecule in all adsorption sites below monolayer coverage. The three-hollow sites are energetically the most favorable for H chemisorption. The binding energy of H to the surface decreases slightly up to one monolayer, suggesting a small repulsive H-H interaction on nonadjacent sites. Subsurface and vacancy sites are energetically less favorable for H adsorption than on-top sites. Recombination of chemisorbed H atoms leads to the formation of gas-phase H(2) with no molecular chemisorbed state. Recombination is an exothermic process and occurs on the bridge site with a pronounced energy barrier. This energy barrier is significantly higher than that inferred from experimental temperature-programmed desorption (TPD) studies. However, there is significant permeability of H atoms through the recombination energy barrier at low temperatures, thus increasing the rate constant for H(2) desorption due to quantum tunneling effects, and improving the agreement between experiment and theory.  相似文献   

13.
镍和铂单晶(111)面上氢解离的比较研究周鲁,孙本繁,吕日昌,唐向阳,滕礼坚(中国科学院大连化学物理研究所分子反应动力学国家重点实验室,大连116023)关键词镍晶面,铂晶面,氢解离吸附,位能面,分子催化过渡金属镍和铂是催化加氢、脱氢以及临氢重整的重...  相似文献   

14.
The desorption of molecular hydrogen during low-energy electron irradiation of self-assembled monolayers containing n-alkanethiols has been previously reported, yet to date, there is no consensus as to the mechanism for the formation of this ubiquitous product. In this study, mixed monolayers containing known ratios of perhydrogenated and perdeuterated alkanethiols were chemisorbed to Au(111)/mica substrates and used as targets for low-energy electron irradiation; by measuring the electron-stimulated production of H(2), D(2), and HD as a function of the film composition, we unambiguously show that the desorbing molecular hydrogen is formed via a two-step bimolecular reaction process. The initial electron-molecule scattering event produces a reactive atomic fragment, which then abstracts a hydrogen atom from a nearby molecular site to produce the measured bimolecular yields; the contribution of one-step unimolecular dissociation channels to the overall molecular hydrogen yields is below the approximately 5% detection limit. The dependence of the electron-induced modifications to the film on the incident electron energy suggests that the primary event is dissociative electron attachment, and that the primary reactive fragment is most likely H(-). Quantitative analysis of the product yields shows that while approximately 80% of the molecular hydrogen is formed by this bimolecular mechanism within the film, the remaining 20% is formed from reactive atomic fragments that are ejected from the film and subsequently react with residual H(2)O adsorbed on the chamber walls.  相似文献   

15.
Details of the chemical mechanism underlying the growth of colloidal semiconductor nanocrystals remain poorly understood. To provide insight into the subject, we have preformed a comprehensive study of the polar (0001) and (0001) and nonpolar (1120) wurtzite CdSe surfaces that are exposed during crystal growth using first-principles density functional theory (DFT-GGA) calculations. Stabilization of these surfaces by relaxation and reconstruction was considered. Two particular reconstructions of the polar surfaces were examined: vacancy formation on a 2 x 2 unit cell and addition of Se and Cd atoms on the (0001) and (0001) surfaces, respectively. Calculation results indicate that the (1120) is the most stable surface when compared to the two polar surfaces. Furthermore, reconstructions of the (0001) surface are energetically favored when compared to reconstructions of the (0001) facet. Adsorption of Cd and Se atoms and the CdSe molecule on the three relaxed surfaces and two reconstructed (0001) surfaces were also investigated. Several binding sites were considered to determine the most stable binding geometries and energetics. Atomic species preferentially bind in either 2-fold or 3-fold sites, while the CdSe molecule binds parallel to the surface on all of the considered surfaces. Vibrational frequencies of the adspecies were calculated for the most stable binding configurations and were included in the zero point energy correction. Diffusion barriers for the atomic and molecular species were estimated where possible to be between 0.2 and 0.4 eV on the three relaxed surfaces. Thermochemistry of the CdSe molecule binding and dissociation was also investigated. On all considered surfaces, dissociation is preferred to desorption with dissociation only exothermic on the (0001) surface. Comparison of the three relaxed and two reconstructed surfaces indicates that CdSe molecule binding and dissociation is thermodynamically favored on the (0001) surface. This implies that under a reaction-controlled regime, the rate of homoepitaxy would be faster on the (0001) Se terminated surface than on the (0001) and (1120) surfaces, making the (0001) surface of a nanocrystal the primary direction of growth.  相似文献   

16.
We have studied how the formation of molecular hydrogen on silicates at low temperature is influenced by surface morphology. At low temperature (<30 K), the formation of molecular hydrogen occurs chiefly through weak physical adsorption processes. Morphology then plays a role in facilitating or hindering the formation of molecular hydrogen. We studied the formation of molecular hydrogen on a single crystal forsterite and on thin films of amorphous silicate of general composition (Fe(x)Mg((x-1)))(2)SiO(4), 0 < x < 1. The samples were studied ex situ by Atom Force Microscopy (AFM), and in situ using Thermal Programmed Desorption (TPD). The data were analysed using a rate equation model. The main outcome of the experiments is that TPD features of HD desorbing from an amorphous silicate after its formation are much wider than the ones from a single crystal; correspondingly typical energy barriers for diffusion and desorption of H, H(2) are larger as well. The results of our model can be used in chemical evolution codes of space environments, where both amorphous and crystalline silicates have been detected.  相似文献   

17.
氢在Mg_2Ni(100)面的吸附及扩散   总被引:2,自引:0,他引:2  
运用第一性原理研究氢在清洁和掺杂Al的Mg2Ni(100)面的吸附及扩散.在清洁Mg2Ni(100)表面,氢原子可稳定地吸附于Mg-Ni桥位和Mg-Mg桥位,吸附能为1.19-1.52eV.在掺杂Al的Mg2Ni(100)表面,氢原子可稳定吸附于Al-Ni、Mg-Ni、Mg-Al桥位,吸附能为0.10-0.29eV.氢在掺杂Al的Mg2Ni(100)表面的吸附能低于其在清洁表面的吸附能,说明掺杂Al后氢原子与表面的相互作用减弱.过渡态计算结果表明,氢原子由清洁的Mg2Ni(100)面及掺杂Al的Mg2Ni(100)面扩散至次表层的势垒分别为0.59及-0.04eV,掺杂Al后氢原子的扩散势垒降低,说明氢原子更易由掺杂Al表面扩散至次表层.Al原子替代Mg2Ni(100)面的Mg原子减弱氢原子与表面的相互作用,降低氢原子由表层扩散至次表层的势垒,这可能是Mg2Ni合金掺杂Al可改善其吸氢动力学性能的主要原因之一.  相似文献   

18.
A mechanistic understanding on the enhanced kinetics of hydrogen storage in the NaBH(4)-added Mg(NH(2))(2)-2LiH system is provided by carrying out experimental investigations associated with first-principles calculations. It is found that the operating temperatures for hydrogen desorption of the Mg(NH(2))(2)-2LiH system are reduced by introducing NaBH(4), and the NaBH(4) species seems almost unchanged during dehydrogenation/hydrogenation process. First-principles calculations reveal that the presence of NaBH(4) in the Mg(NH(2))(2)-2LiH system facilitates the formation of Mg vacancies in Mg(NH(2))(2). The appearance of Mg vacancies not only weakens the N-H bonds but also promotes the diffusion of atoms and/or ions, consequently resulting in the improvement of the reaction kinetics of hydrogen desorption/absorption of the NaBH(4)-added Mg(NH(2))(2)-2LiH system. This finding provides us with a deep insight into the role played by NaBH(4) in the Li-Mg-N-H system, as well as ideas for designing high-performance catalysts for metal-N-H-based hydrogen storage media.  相似文献   

19.
Alanes are believed to be the mass transport intermediate in many hydrogen storage reactions and thus important for understanding rehydrogenation kinetics for alanates and AlH3. Combining density functional theory (DFT) and surface infrared (IR) spectroscopy, we provide atomistic details about the formation of alanes on the Al(111) surface, a model environment for the rehydrogenation reactions. At low coverage, DFT predicts a 2-fold bridge site adsorption for atomic hydrogen at 1150 cm(-1), which is too weak to be detected by IR but was previously observed in electron energy loss spectroscopy. At higher coverage, steps are the most favorable adsorption sites for atomic H adsorption, and it is likely that the AlH3 molecules form (initially strongly bound to steps) at saturation. With increasing exposures AlH3 is extracted from the step edge and becomes highly mobile on the terraces in a weakly bound state, accounting for step etching observed in previous STM studies. The mobility of these weakly bound AlH3 molecules is the key factor leading to the growth of larger alanes through AlH3 oligomerization. The subsequent decomposition and desorption of alanes is also investigated and compared to previous temperature programmed desorption studies.  相似文献   

20.
Methane and molecular hydrogen desorption from a methyl and hydrogen exposed Cu(001) surface is investigated. Both gaseous products are observed nearly simultaneously within two temperature regimes separated by more than 100 K. The lower temperature desorption, at ~325 K, is believed to result from two processes which compete for adsorbed atomic hydrogen: methyl reduction and associative hydrogen desorption. The higher-temperature competitive desorption is initiated after the onset of thermal decomposition of remaining methyl species, at ~420 K. Kinetic simulations of the two presumed competing reactions are used to show observable and comparable methane and hydrogen evolution can occur in two temperature regimes, only with a precise balance of kinetic parameters, but fail to accurately reproduce the observed small differences in CH(4) and H(2) peak desorption temperatures. It is concluded that either the utilized desorption kinetics are inaccurate at low H((a)) coverages or rapid desorption, or the same reactions are not competitive at higher temperatures and an alternative active mechanism for product evolution must exist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号