首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Theoretical study on the geometries and electronic properties of new conjugated compounds based on thiophene and phenylene was carried out. The theoretical ground-state geometries and electronic structures of the studied molecules were obtained using the density functional theory (DFT) method at B3LYP level with 6-31G(d) basis set. The electronic properties were determined by ZINDO/s, CIS/3-21G(d), and TD//B3LYP/3-21G(d) calculations performed on the B3LYP/6-31(d) optimized geometries. The effects of the ring structure and the substituents on the geometries and electronic properties of these materials were discussed. The results of this study indicate how the electronic properties can be tuned by the backbone ring or side group and suggest these compounds as good candidates for opro-electronic applications.  相似文献   

2.
In this work, we investigate oligopyrroles and derivatives, which serve as models for corresponding polymers. In order to discuss these materials, we carried out DFT calculations and used DFT methods to calculate ground state electronic structures. We are particularly interested in exploring the potential of several substituent groups as electron donors with numerous ties to electronic materials by exploring and comparing the energies of HOMO, LUMO, Gap energies, and structural properties. Results are discussed in comparison with the properties of the doped oligomers. The theoretical ground-state geometry and electronic structure of the studied molecules were obtained by the DFT method at B3LYP level with 6-31G(d) basis set. The opto-electronic properties of these materials were determined by ZINDO/s and TD//B3LYP/6-31G(d) calculations performed on the B3LYP/6-31(d) optimized geometries. The results of this study demonstrate how electronic properties can be tuned by the backbone ring or side group and suggest these compounds as good candidates for opto-electronic applications.  相似文献   

3.
Several economical methods for geometry optimization, that should be applicable to larger molecules, have been evaluated for 19 phosphorus acid derivatives. MP2/cc-pVDZ geometry optimizations are used as reference points and the geometries obtained from the other methods are evaluated with respect to deviations in bond lengths and angles, from the reference geometries. The geometry optimization methods are also compared to the much used B3LYP/6-31G(d) method. Single point energies obtained by subsequent EDF1/6-31+G(d) or B3LYP/6-31+G(d,p) calculations on the respective equilibrium geometries are also reported relative to the energies obtained from the reference geometries. The geometries from HF/MIDI! optimizations were closer to those of the references than the geometries of the HF/3-21G(d), HF/6-31G(d), and B3LYP/MIDI! optimizations. The EDF1/6-31+G(d) or B3LYP/6-31+G(d,p) single point energies obtained from the HF/3-21G(d), HF/6-31G(d), and B3LYP/MIDI! geometries gave a mean absolute deviation (MAD) from that of the reference geometries of 1.4-3.9 kcal mol m 1 . The HF/MIDI! geometries, however, gave EDF1/6-31+G(d) and B3LYP/6-31+G(d,p) energies with a MAD of only about 0.5 and 0.55 kcal mol m 1 respectively from the energies obtained with the reference geometries. Thus, use of HF/MIDI! for geometry optimization of phosphorus acids is a method that gives geometries of near-MP2 quality, resulting in a fair accuracy of energies in subsequent single point calculations, at a much lower computational cost other methods that give similar accuracies.  相似文献   

4.
The geometries,electronic structure,IR spectrum and other properties of hydrogen interaction between 5-fluorouracil and glycine were studied at the B3LYP/6-31+G* level.Single point energy calculations were executed at the B3LYP/6-311++G** and B3LYP/aug-cc-pvdz levels,and natural bond orbital (NBO) analysis was carried out at the B3LYP/6-31+G* level.Finally,the hydrogen bonds were discussed via AIM electronic density topology analysis.  相似文献   

5.
6.
使用密度泛函理论B3LYP方法和6-31G(d,p)、6-31+G(d,p)、6-311G(d,p)及6-311+G(d,p)基组,分别对2-C5H10+和1-C5H10+的各种构象进行了几何构型优化,并用B3LYP/6-311G(d,p)进行了频率分析计算.计算预言1-C5H10+具有非平面构型,与以往报导的从头算计算结论相反.在两个自由基阳离子的各种构象的B3LYP几何构型上,进行了B3LYP和UMP2(full)方法的超精细偶合常数计算,得到了比以往更好的结果.  相似文献   

7.
Computational investigations into the ground and singlet excited-state structures and the experimental ground-state absorption spectra of N-confused tetraphenylporphyrin tautomers 1e and 1i and N-confused porphines (NCP) 2e and 2i have been performed. Structural data for the ground state, performed at the B3LYP/6-31G(d), B3LYP/6-31+G(d)//B3LYP/6-31G(d), and B3LYP/6-311+G(d)//B3LYP/6-31G(d) levels, are consistent with those performed at lower levels of theory. Calculations of the gas-phase, ground-state absorption spectrum are qualitatively consistent with condensed phase experiments for predicting the relative intensities of the Q(0,0) and Soret bands. Inclusion of implicit solvation in the calculations substantially improves the correlation of the energy of the Soret band with experiment for both tautomers (1e, 435 nm predicted, 442 nm observed in DMAc; 1i, 435 nm predicted, 437 nm observed in CH2Cl2). The x- and y-polarized Q-band transitions were qualitatively reproduced for 1e in both the gas phase and with solvation, although the low-energy absorption band in 1i was predicted at substantially higher energy (646 nm in the gas phase and 655 nm with solvation) than observed experimentally (724 nm in CH2Cl2). Franck-Condon state and equilibrated singlet excited-state geometries were calculated for unsubstituted NCP tautomers 2e and 2i at the TD-B3LYP/SVP and TD-B3LYP/TZVP//TD-B3LYP/SVP levels. Electronic difference density plots were calculated from these geometries, thereby indicating the change of electron density in the singlet excited states. Adiabatic S1 and S2 geometries of these compounds were also calculated at the TD-B3LYP/SVP level, and the results indicate that while 2i is a more stable ground-state molecule by approximately 7.0 kcal mol-1, the energy difference for the S1 excited states is only approximately 1.0 kcal mol-1 and is 6.1 kcal mol-1 for the S2 excited states.  相似文献   

8.
C_3O_2分子结构和光谱的密度泛函理论研究   总被引:2,自引:0,他引:2  
使用密度泛函理论,在B3LYP/6-31G(d)和B3LYP/6-311G(2d)水平上,研究了C_3O_2分子的可能几何构型,并在6-31G(d)水平上计算了其中2种总能量最小的构型的振动频率,同时与实验观察值进行了比较, 计算结果当C_3O_2分子具有C2v对称性的W型弯曲结构(键角C-C-C和C-C-O分别为162.3°和178.8°)时,振动频率的计算值和实验观察值非常吻合。  相似文献   

9.
The electronic structures and geometries of 1-(3,4; 3,5 and 3,6-bis-Selenocyanato-phenyl) pyrrolidinofullerenes were investigated theoretically using Density Functional theory at the B3LYP/3-21G∗ and B3LYP/6-31G∗ levels of theory. On all levels of theory the ortho isomer is predicted to be the most stable. The obtained optimized geometries, electronic properties and energetics of structural variables are discussed.  相似文献   

10.
Tetralin, chroman as well as its' S and Se containing congeners were subjected to ab initio (RHF/3-21G and RHF/6-31G(d)) and DFT (B3LYP/6-31G(d)) computation. Molecular geometries and the activation energies for ring inversions were determined with full geometry optimizations.  相似文献   

11.
In this work, FT-IR and FT-Raman spectra of 1-methoxynapthalene (C(11)H(10)O) have been reported in the regions 4000-400 cm(-1) and 3500-100 cm(-1), respectively. Density functional method (DFT) has been used to calculate the optimized geometrical parameters, atomic charges, vibrational wavenumbers and intensity of the vibrational bands. The vibrational frequencies have been calculated and scaled values are compared with experimental FT-IR and FT-Raman spectra. The structure optimizations and normal coordinate force field calculations are based on density functional theory (DFT) method with B3LYP/3-21G, B3LYP/6-31G, B3LYP/6-31G(d,p) and B3LYP/6-311++G(d,p) basis sets. The complete vibrational assignments of wavenumbers are made on the basis of potential energy distribution (PED). The optimized geometric parameters are compared with experimental values of naphthoic acid. The results of the calculation shows excellent agreement between experimental and calculated frequencies in B3LYP/6-311++G(d,p) basis set. The effects due to the substitutions of methyl group and carbon-oxygen bond are also investigated. A study on the electronic properties, such as excitation energies and wavelengths, were performed by time-dependent DFT (TD-DFT) approach. HOMO and LUMO energies are calculated that these energies show charge transfer occurs within the molecule.  相似文献   

12.
A computational study of inclusion complexes of 2-methyl-βCD with Doxycycline tautomeric (enol and keto form) has been performed with several combinations of ONIOM hybrid calculations. The reliability of the ONIOM2 calculations at the integrated level, ONIOM2 (M05-2X/6-31G(d): M05-2X/3-21G*), ONIOM2 (M05-2X/6-31G(d):HF/3-21G*), ONIOM2 (B3LYP/6-31G(d):HF/3-21G*), ONIOM2 (B3LYP/6-31G(d):B3LYP/3-21G*) and ONIOM2 (B3PW91/6-31G(d):B3PW91/3-21G*) was examined. Their complexation, binding, deformation and stabilization energies, and geometrical data were compared with those of the target geometry structure optimized at the M05-2X/6-31G(d) level of theory. Mixed combinations ONIOM2 (M05-2X 6-31G(d):HF 3-21G*) and ONIOM2 (B3LYP 6-31G(d):HF 3-21G*) reproduces nearly the target geometry structure and provides realistic energetic results at a relatively low computational cost.  相似文献   

13.
The semi-empirical AM1 and INDO/CIS methods as well as density function theory were used to study equilibrium geometries and spectroscopic properties of the possible isomers of C78O5 based on C2v-C78. The most stable geometry of C78O5 is 28,29,30,31,52,53,70,71,73,78-C78O5(A) with one annulene-like structure and four epoxide structures. Compared with that of C2v-C78, the blue-shift in the electronic absorption spectra of C78O5 isomers is predicted. The reason for the blue-shift effect is discussed and the electronic transitions are assigned. The IR and NMR spectra of C78O5 are explored with the AM1 and B3LYP/6-31G methods based on the B3LYP/6-31G optimized geometries.  相似文献   

14.
This computational organic chemistry study presents results based on density functional theory at the B3LYP/6-31G(d) and B3LYP/cc-PVTZ//B3LYP/6-31G(d) levels of theory. Other computational procedures (HF and MP2) are presented for model structures. Three main points were investigated: some of the electronic structure aspects, the relative stability of isomers, and aromaticity. The results suggest that the title salts are the first Schiff base systems in the literature to exist only in the N-H form, which is characterized as the zwitterion form. Also, the estimated delocalization of the π-electron density in the middle ring indicates that these compounds are the first examples of metalla-hetero[10]annulenes. Analysis of the electron density delocalization indicates that the title compounds are better conductors at the molecular level than the parent Schiff base, and therefore, can be considered as new building blocks for organic materials.  相似文献   

15.
We estimated one-electron reduction potentials of redox-active organic molecules for a spectrum of eight different functional groups (phenoxyl, p-benzoquinone, phenylthiyl, p-benzodithiyl, carboxyl, benzoyloxyl, carbthiyl, and benzoylthiyl) in protic (water) and aprotic (acetonitrile, N,N-dimethylacetamide) solvents. Electron affinities (EA) were evaluated in a vacuum with high level quantum chemical methods using Gaussian3-MP2 (G3MP2) and Becke 3 Lee, Yang, and Parr functional B3LYP with aug-cc-pVTZ basis set. To evaluate one-electron redox potentials, gas-phase free energies were combined with solvation energies obtained in a two-step computational approach. First, atomic partial charges were determined in a vacuum by the quantum chemical method B3LYP/6-31G(d,p). Second, solvation energies were determined, solving the Poisson equation with these atomic partial charges. Redox potentials computed this way, compared to experimental data for the 21 considered organic compounds in different solvents, yielded overall root-mean-square deviations of 0.058 and 0.131 V using G3MP2 or B3LYP to compute electronic energies, respectively, while B3LYP/6-31G(d,p) was used to compute solvation energies.  相似文献   

16.
A reliable computational method for the prediction of organoselenium geometries and bond dissociation energies (BDEs) has been determined on the basis of the performance of density functional theory (DFT: B3LYP and B3PW91) and ab initio molecular orbital procedures (Hartree-Fock (HF)) in conjunction with various Pople basis sets including (but not limited to) the 6-31G(d), 6-31G(d,p), 6-311G(d), 6-311G(d,p), 6-311G(2df,p), and 6-311G(3df,3pd) sets. Predicted geometries and BDEs are compared with available experimental data and quadratic configuration interaction including single and double substitutions (QCISD) results. The B3PW91/6-311G(2df,p) level of theory is recommended for the prediction of the geometries and energetics of organoselenium compounds.  相似文献   

17.
The B3LYP/6-31+G(d) molecular geometry optimized structures of 17 five-membered heterocycles were employed together with the gauge including atomic orbitals (GIAO) density functional theory (DFT) method at the B3LYP/6-31+G(d,p), B3LYP/6-311++G(d,p) and B3LYP/6-311+G(2d,p) levels of theory for the calculation of proton and carbon chemicals shifts and coupling constants. The method of geometry optimization for pyrrole (1), N-methylpyrrole (2) and thiophene (7) using the larger 6-311++G(d,p) basis sets at the B3LYP/6-31+G(d,p), B3LYP/6-311++G(d,p), B3LYP/6-31+G(2d,p) and B3LYP/cc-pVTZ levels of theory gave little difference between calculated and experimental values of coupling constants. In general, the (1)H and 13C chemical shifts for all compounds are in good agreement with theoretical calculations using the smaller 6-31 basis set. The values of nJHH(n=3, 4, 5) and rmnJ(CH)(n=1, 2, 3, 4) were predicted well using the larger 6-31+G(d,p) and 6-311++G(d,p) basis sets and at the B3LYP/6-31+G(d,p), B3LYP/6-311++G(d,p), B3LYP/6-31+G(2d,2p) levels of theory. The computed atomic charges [Mülliken; Natural Bond Orbital Analysis (NBO); Merz-Kollman (MK); CHELP and CHELPG] for the B3LYP/6-311++G(d,p) geometry optimized structures of 1-17 were used to explore correlations with the experimental proton and carbon chemical shifts.  相似文献   

18.
Binding affinities of a cyclic β-peptoid to amino acids were studied using the density functional theory (DFT) at the B3LYP/6-311G(d,p) level after the basis set superior error (BSSE). The host molecule possesses binding ability to amino acids since the binding energies of the complexes formed are negative. The complexes were stabilized via hydrogen bonds between the host and the guest molecules. Based on the B3LYP/6-31G(d) optimized geometries, electronic spectra of the complexes were calculated using the INDO/CIS method. 13C NMR spectra and nucleus-independent chemical shift (NICS) values of the complexes were computed at the B3LYP/6-31G(d) level. Carbon atoms in the carboxyl groups of the complexes are shifted downfield relative to those of the host. Some complexes exhibit aromaticity although the host shows anti-aromaticity. Formation of hydrogen bonds leads to cyclic current formation in these complexes.  相似文献   

19.
The reaction of the ketenyl radical (HCCO) with acetylene (C(2)H(2)) is very relevant to the oxygen-acetylene flames and fuel-rich combustion process for nitrogen-containing compounds. Unfortunately, except for several rate constant measurements, the mechanism is completely unknown for this reaction. In this paper, detailed theoretical investigations are performed for the HCCO + C(2)H(2) reaction at the G3B3 level using the B3LYP/6-31G(d), B3LYP/6-311++G(d,p), and QCISD/6-31G(d) geometries. The exclusive fragmentation channel is the formation of the cyclopropenyl radical (c-C(3)H(3)) and carbon monoxide (CO) via the chainlike OCCHCHCH and three-membered ring OC-cCHCHCH intermediates. Thus, the mass spectroscopic peak of C(3)H(3)(+) in a previous experiment can be explained. The calculated overall reaction barrier is 4.4, 4.4, and 5.3 kcal/mol at the G3B3//B3LYP/6-31G(d), G3B3//B3LYP/6-311++G(d,p), and G3B3//QCISD/6-31G(d) levels, respectively. The title reaction may provide an effective route for generating the long-sought cyclopropenyl radical in the laboratory, which has been the long-standing subject of numerous theoretical studies as the simplest cyclic conjugate radical, and its bulky derivatives were already known. Future experimental investigations for the HCCO + C(2)H(2) reaction are greatly desired to test the predicted fragmentation channel. The implication of the present study in combustion and interstellar processes is discussed.  相似文献   

20.
用密度函数理论B3LYP方法和6-31G(d,p),6-311G(d,p)及6-311+G(d,p)基组,分别对1-C4H^+~8,2-C4H^+~8和C4H^+~10进行了构型优化和频率分析计算,预言1-C4H^+~8具有非平面构型,与以往报道的从头算和密度函数理论计算结果不同。在各自由基阳离子的B3LYP构型上,进行了B3LYP、MP2及MRSDCI方法的超精细偶合常数计算,得到了比以往更好的结果,特别是MP2/B3LYP计算值是至今与实验值符合得最好的理论计算结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号