首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Szemerédi's theorem states that given any positive number B and natural number k, there is a number n(k, B) such that if n ? n(k, B) and 0 < a1 < … < an is a sequence of integers with an ? Bn, then some k of the ai form an arithmetic progression. We prove that given any B and k, there is a number m(k, B) such that if m ? m(k, B) and u0, u1, …, um is a sequence of plane lattice points with ∑i=1m…ui ? ui?1… ? Bm, then some k of the ui are collinear. Our result, while similar to Szemerédi's theorem, does not appear to imply it, nor does Szemerédi's theorem appear to imply our result.  相似文献   

2.
The following theorem is proved. If a1, … ak are distinct elements of a group, written additively, though not necessarily Abelian, and the sums ai1 + … + aim, 1 ? i1 < … < im ? k do not represent 0, then they represent at least 2k ? 1 distinct elements, and this bound 2k ? 1 is attained only when k ? 3 or when the elements a1, …, ak generate a dihedral group.  相似文献   

3.
Let A be an n × n normal matrix over C, and Qm, n be the set of strictly increasing integer sequences of length m chosen from 1,…,n. For α, β ? Qm, n denote by A[α|β] the submatrix obtained from A by using rows numbered α and columns numbered β. For k ? {0, 1,…, m} we write |αβ| = k if there exists a rearrangement of 1,…, m, say i1,…, ik, ik+1,…, im, such that α(ij) = β(ij), i = 1,…, k, and {α(ik+1),…, α(im) } ∩ {β(ik+1),…, β(im) } = ?. A new bound for |detA[α|β ]| is obtained in terms of the eigenvalues of A when 2m = n and |αβ| = 0.Let Un be the group of n × n unitary matrices. Define the nonnegative number
where | αβ| = k. It is proved that
Let A be semidefinite hermitian. We conjecture that ρ0(A) ? ρ1(A) ? ··· ? ρm(A). These inequalities have been tested by machine calculations.  相似文献   

4.
Let kn ? kn?1 ? … ? k1 be positive integers and let (ij) denote the coefficient of xi in Πr=1j (1 + x + x2 + … + xkr). For given integers l, m, where 1 ? l ? kn + kn?1 + … + k1 and 1 ? m ? (nn), it is shown that there exist unique integers m(l), m(l ? 1),…, m(t), satisfying certain conditions, for which m = (m(l)l + (m(l?1)l?1) + … + (m(t)t). Moreover, any m l-subsets of a multiset with ki elements of type i, i = 1, 2,…, n, will contain at least (m(l)l?1) + (m(l?1)l?2) + … + (m(t)t?1 different (l ? 1)-subsets. This result has been anticipated by Greene and Kleitman, but the formulation there is not completely correct. If k1 = 1, the numbers (ji) are binomial coefficients and the result is the Kruskal-Katona theorem.  相似文献   

5.
A sequence {d, d+1,…, d+m?1} of m consecutive positive integers is said to be perfect if the integers {1, 2,…, 2m} can be arranged in disjoint pairs {(ai, bi): 1?i?m} so that {bi?ai: 1?i?m}={d,d+1,…,d+m?1}. A sequence is hooked if the set {1, 2,…, 2m?1 2m+1} can be arranged in pairs to satisfy the same condition. Well known necessary conditions for perfect sequences are herein shown to be sufficient. Similar necessary and sufficient conditions for hooked sequences are given.  相似文献   

6.
Let A be an n-square normal matrix over C, and Qm, n be the set of strictly increasing integer sequences of length m chosen from 1,…, n. For α,βQm, n denote by A[α|β] the submatrix obtained from A by using rows numbered α and columns numbered β. For k∈{0,1,…,m} write z.sfnc;αβ|=k if there exists a rearrangement of 1,…,m, say i1,…,ik, ik+1,…,im, such that α(ij)=β(ij), j=1,…,k, and {α(ik+1),…,α(im)};∩{β(ik+1),…,β(im)}=ø. Let
be the group of n-square unitary matrices. Define the nonnegative number
?k(A)= maxU∈|det(U1AU) [α|β]|
, where |αβ|=k. Theorem 1 establishes a bound for ?k(A), 0?k<m?1, in terms of a classical variational inequality due to Fermat. Let A be positive semidefinite Hermitian, n?2m. Theorem 2 leads to an interlacing inequality which, in the case n=4, m=2, resolves in the affirmative the conjecture that
?m(A)??m?1(A)????0(A)
.  相似文献   

7.
Let 1 ? k1 ? k2 ? … ? kn be integers and let S denote the set of all vectors x = (x1, x2, …, xn) with integral coordinates satisfying 0 ? xi ? ki, i = 1, 2, …, n. The complement of x is (k1 ? x1, k2 ? x2, …, kn ? xn) and a subset X of S is an antichain provided that for any two distinct elements x, y of X, the inequalities xi ? yi, i = 1, 2, …, n, do not all hold. We determine an LYM inequality and the maximal cardinality of an antichain consisting of vectors and its complements. Also a generalization of the Erdös-Ko-Rado theorem is given.  相似文献   

8.
Let X1, X2, …, Xm be finite sets. The present paper is concerned with the m2 ? m intersection numbers |XiXj| (ij). We prove several theorems on families of sets with the same prescribed intersection numbers. We state here one of our conclusions that requires no further terminology. Let T1, T2, …, Tm be finite sets and let m ? 3. We assume that each of the elements in the set union T1T2 ∪ … ∪ Tm occurs in at least two of the subsets T1, T2, …, Tm. We further assume that every pair of sets Ti and Tj (ij) intersect in at most one element and that for every such pair of sets there exists exactly one set Tk (ki, kj) such that Tk intersects both Ti and Tj. Then it follows that the integer m = 2m′ + 1 is odd and apart from the labeling of sets and elements there exist exactly m′ + 1 such families of sets. The unique family with the minimal number of elements is {1}, {2}, …, {m′}, {1}, {2}, …, {m′}, {1, 2, …, m′}.  相似文献   

9.
A system A1,…,Am of subsets of X?{1,…,n} is called a separating system if for any two distinct elements of X there is a set Ai (1?i?m) that contains exactly one of the two elements. We investigate separating systems where each set Ai has at most k elements and we are looking for minimal separating systems, that means separating systems with the least number of subsets. We call this least number m(n,k). Katona has proved good bounds on m(n,k) but his proof is very complicated. We give a shorter and easier proof. In doing so we slightly improve the upper bound of Katona.  相似文献   

10.
We determine the set of all possible least periods of shift register sequences for non-linear feedback functions of the form f(x0,…,xm?1) = x0 + Πi=1k (xi + bi) where m ? k + 1 ? 3 and the least period of the k-block b1bk itself.  相似文献   

11.
Let n1+n2+?+nm=n where the ni's are integers (possibly negative or greater than n). Let p=(k1,…,km), where k1+k2+?+km=k, be a partition of the nonnegative integer k into m nonnegative integers and let P denote the set of all such partitions. For m?2, we prove the combinatorial identity
p∈Pi=1mni+1?kiki=i?0j+m?2m?2n+1?k?2jk?2j
which implies the surprising result that the left side of the above equation depends on n but not on the ni's.  相似文献   

12.
A review is made of some of the fundamental properties of the sequence of functions {tieλkt}, k = 1,…,s, i = 0,…,mk?1, distinct λ i. In particular it is shown how the Wronskian and Gram matrices of this sequence of functions appear naturally in such fields as spectral matrix theory, controllability, and Lyapunov stability theory.  相似文献   

13.
Suppose that G is a graph, and (si,ti) (1≤ik) are pairs of vertices; and that each edge has a integer-valued capacity (≥0), and that qi≥0 (1≤ik) are integer-valued demands. When is there a flow for each i, between si and ti and of value qi, such that the total flow through each edge does not exceed its capacity? Ford and Fulkerson solved this when k=1, and Hu when k=2. We solve it for general values of k, when G is planar and can be drawn so that s1,…, sl, t1, …, tl,…,tl are all on the boundary of a face and sl+1, …,Sk, tl+1,…,tk are all on the boundary of the infinite face or when t1=?=tl and G is planar and can be drawn so that sl+1,…,sk, t1,…,tk are all on the boundary of the infinite face. This extends a theorem of Okamura and Seymour.  相似文献   

14.
Let P(x) = Σi=0naixi be a nonnegative integral polynomial. The polynomial P(x) is m-graphical, and a multi-graph G a realization of P(x), provided there exists a multi-graph G containing exactly P(1) points where ai of these points have degree i for 0≤in. For multigraphs G, H having polynomials P(x), Q(x) and number-theoretic partitions (degree sequences) π, ?, the usual product P(x)Q(x) is shown to be the polynomial of the Cartesian product G × H, thus inducing a natural product π? which extends that of juxtaposing integral multiple copies of ?. Skeletal results are given on synthesizing a multi-graph G via a natural Cartesian product G1 × … × Gk having the same polynomial (partition) as G. Other results include an elementary sufficient condition for arbitrary nonnegative integral polynomials to be graphical.  相似文献   

15.
For positive integers n, k1, k2,…, kn, t the probem: how many integer sequences (x1, x2,…, xn) does it take such that 0 ? xi ? ki for 1 ? i ? n and any two sequences agree in at least t positions is investigated. Moreover all maximal systems of sequences are described. Results of Livingston and Frankl and Füredi are generalized also.  相似文献   

16.
IfG is a finite group, we define its prime graph Г(G), as follows: its vertices are the primes dividing the order ofG and two verticesp, q are joined by an edge, if there is an element inG of orderpq. We denote the set of all the connected components of the graph Г(G) by T(G)=i(G), fori = 1,2, …,t(G)}, where t(G) is the number of connected components of Г(G). We also denote by π(n) the set of all primes dividingn, wheren is a natural number. Then ¦G¦ can be expressed as a product of m1, m2, …, mt(G), where mi’s are positive integers with π(mi) = πi. Thesem i s are called the order components ofG. LetOC(G) := {m 1,m 2, …,m t (G)} be the set of order components ofG. In this paper we prove that, if G is a finite group andOC(G) =OC(M), where M is a finite simple group witht(M) ≥ 2, thenG is neither Frobenius nor 2-Frobenius.  相似文献   

17.
Let S be a set of n elements, and k a fixed positive integer <12n. Katona's problem is to determine the smallest integer m for which there exists a family A = {A1, …, Am} of subsets of S with the following property: |i| ? k (i = 1, …, m), and for any ordered pair xi, xiS (ij) there is A1A such that xiA1, xj ? A1. It is given in this note that m = ?2nk? if12k2 ? 2.  相似文献   

18.
For n a positive integer and A1, A2, …, Ak sets of nonnegative integers, sufficient conditions are found which imply that the sum of the cardinalities of the sets {1, 2, …, n} ? Ai (i = 1, 2, …, k) does not exceed the cardinality of the intersection of {1, 2, …, n} and the number theoretic sum of the k sets. Some of the results are generalized to sets of m-tuples of nonnegative integers.  相似文献   

19.
Let n and m be natural numbers, n ? m. The separation power of order n and degree m is the largest integer k = k(n, m) such that for every (0, 1)-matrix A of order n with constant linesums equal to m and any set of k 1's in A there exist (disjoint) permutation matrices P1,…, Pm such that A = P1 + … + Pm and each of the k 1's lies in a different Pi. Almost immediately we have 1 ? k(n, m) ? m ? 1, yet in all cases where the value of k(n, m) is actually known it equals m ? 1 (except under the somewhat trivial circumstances of k(n, m) = 1). This leads to a conjecture about the separation power, namely that k(n, m) = m ? 1 if m ? [n2] + 1. We obtain the bound k(n, m) ? m ? [n2] + 2, so that this conjecture holds for n ? 7. We then move on to latin squares, describing several equivalent formulations of the concept. After establishing a sufficient condition for the completion of a partial latin square in terms of the separation power, we can show that the Evans conjecture follows from this conjecture about the separation power. Finally the lower bound on k(n, m) allows us to show, after some calculations, that the Evans conjecture is true for orders n ? 11.  相似文献   

20.
Let 1?k1?k2?…?kn be integers and let S denote the set of all vectors x = (x1, …, xn with integral coordinates satisfying 0?xi?ki, i = 1,2, …, n; equivalently, S is the set of all subsets of a multiset consisting of ki elements of type i, i = 1,2, …, n. A subset X of S is an antichain if and only if for any two vectors x and y in X the inequalities xi?yi, i = 1,2, …, n, do not all hold. For an arbitrary subset H of S, (i)H denotes the subset of H consisting of vectors with component sum i, i = 0, 1, 2, …, K, where K = k1 + k2 + …kn. |H| denotes the number of vectors in H, and the complement of a vector x?S is (k1-x1, k2-x2, …, kn -xn). What is the maximal cardinality of an antichain containing no vector and its complement? The answer is obtained as a corollary of the following theorem: if X is an antichain, K is even and|(12K)X| does not exceed the number of vectors in (12K)S with first coordinate different from k1, then
i=0Ki≠12K|(i)X||(i)S|+|(12K)X||(12K-1)S|?1
.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号