首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
何博  丰松江  聂万胜 《计算物理》2013,30(2):194-202
考虑气相非稳态及液滴内部环流,建立运动液滴非稳态蒸发燃烧模型.模型采用动网格方法精确追踪液滴表面位置,采用守恒方程组更新液滴表面边界条件.根据单步全局化学反应机理,仿真研究正庚烷燃料液滴在不同对流速度下的火焰形态及燃烧.结果表明:运动液滴内部环流使液滴内部低温区向环流中心移动.当液滴运动速度大于某临界值后,火焰形态由包覆火焰转变为尾迹火焰.包覆火焰的富燃区范围、高温区范围及燃烧速率明显较尾迹火焰大;包覆火焰的液滴表面温度及表面蒸发流率分布也明显不同于尾迹火焰.  相似文献   

2.
Characteristic temperatures and concentrations of a vapor–gas mixture in a wake of water droplets moving through combustion products (initial temperature 1170 K) were determined using the Ansys Fluent mathematical modeling package. We investigated two variants of motion: motion of two droplets (with sizes from 1 mm to 3 mm), consecutive and parallel, and motion of five staggered droplets. The influence of the relative position of droplets and also of distances between them (varied from 0.01 mm to 5 mm) on temperatures and concentrations of water vapor was established. The distances determine the relation between the evaporation areas and the total volume occupied by a droplet aggregate in the gas medium. The results of modeling for conditions that take into account vaporization on the droplet surface at average constant values of evaporation rate and also with consideration of the change in the latter, depending on the droplet temperature field, are compared. We determined conditions under which the modeling results are comparable for the assumption of a constant vaporization rate and with regard to the dependence of the latter on temperature. The earlier hypothesis on formation of a buffer vapor layer (“thermal protection”) around a droplet, which decreases the thermal flow from the external gas medium, was validated.  相似文献   

3.
喷雾蒸发燃烧的研究对指导发动机燃烧系统设计具有重要意义。本文搭建了高速数字全息系统,在线测量乙醇喷雾火焰中液滴的粒径、三维位置、速度及蒸发率。对喷雾火焰中的液滴进行了统计分析,得到液滴粒径及三维空间分布。燃烧喷雾场液滴的平均粒径为68μm;非燃烧火焰测试区液滴数量多且较密集,燃烧火焰测试区液滴数量少且稀疏.追踪单液滴并处理得到湍流火焰中液滴的运动轨迹及速度。通过研究粒径的平方D2随停留时间ts的变化,测得液滴平均蒸发率为-3.343×10-7 m2/s.  相似文献   

4.
The motion of spray water through a counter flow of high-temperature gases is experimentally studied on a macroscopic level using optical techniques for diagnostics of two-phase liquid-gas and vapor-liquid flows. It is found that the initial temperature, concentration of typical impurities, and dispersity of water influence the component composition of the forming gas-vapor-droplet mixture. The integral characteristics of evaporation of solitary droplets with initial sizes (conditional characteristic radii) of 3–5 mm and a spray water flow with droplets less than 0.5 mm across through a high-temperature gaseous medium are compared.  相似文献   

5.
液滴撞击加热壁面传热实验研究   总被引:4,自引:0,他引:4       下载免费PDF全文
沈胜强  张洁珊  梁刚涛 《物理学报》2015,64(13):134704-134704
本文采用高速摄像仪对水滴和乙醇液滴撞击加热壁面后的蒸发过程进行了实验观测, 分析了液滴撞击加热壁面后的蒸发特性参数. 实验中, 两种液体初始温度均为20 ℃, 不锈钢壁面初始温度范围为68-126℃. 水滴初始直径为2.07 mm, 撞击壁面时Weber 数为2-44; 乙醇液滴初始直径为1.64 mm, Weber数为3-88. 结果表明, 液滴受到重力、表面张力及流动性的影响, 在蒸发过程的大部分时间内, 水滴高度持续降低而接触直径几乎不变; 蒸发后期, 液滴发生回缩, 水滴的接触直径、高度和接触角出现振荡现象. 乙醇液滴的接触角随时间的增加呈现先减小随后保持不变的趋势, 而接触直径和高度则持续减小, 直到液滴完全蒸发. 液滴蒸发总时长与液体物性和壁面温度有关, 随壁面温度的升高而减小, 与液滴撞击壁面时的Weber 数无关. 同时, 随着壁面温度的升高, 液滴显热部分占总换热量的比重增大, 显热部分能量不可忽略, 本文实验条件下得到水滴的平均热流密度为0.014-0.110 W·mm-2.  相似文献   

6.
The results of study of evaporation of water droplets and NaCl salt solution from a solid substrate made of anodized aluminum are presented in this paper. The experiment provides the parameters describing the droplet profile: contact spot diameter, contact angle, and droplet height. The specific rate of evaporation was calculated from the experimental data. The water droplets or brine droplets with concentration up to 9.1 % demonstrate evaporation with the pinning mode for the contact line. When the salt concentration in the brine is taken up to 16.7 %, the droplet spreading mode was observed. Two stages of droplet evaporation are distinguished as a function of phase transition rate.  相似文献   

7.
The evaporation of single droplets and sprays into gaseous atmosphere and the evaporation of sessile liquid droplets on solid substrates are here considered. We argue that if thermodynamics is augmented with Derjaguin’s (disjoining/conjoining) pressure to handle phenomena in a vicinity of the three-phase contact line, problems like the singularity of the evaporation flux and of the viscous stress at the three-phase contact line of a sessile droplet are ruled out.  相似文献   

8.
本文应用溶液注入热等离子体喷徐传热和流动过程的三维数学模型.对溶液喷雾喷入参数对溶液喷雾在热等离子体射流中运动和加热历程的影响进行了研究.结果表明以一定的角度逆向喷入溶液可以强化溶液喷雾的加热蒸发过程,在一定范围内提高溶液初始喷入速度,可以使小粒径的液滴获得较大的动量进入射流高温区获得充分加热.结果还表明,为了得到致密...  相似文献   

9.
Recently developed multi‐dimensional coupled fluid‐droplet model is used to investigate the behavior of complex interaction between the liquid precursor droplets and atmospheric pressure plasma (APP). The significance of this droplet‐plasma interaction is not well understood under diverse realm of working conditions in two‐phase flow. In this study, we explain the implication of vaporization of liquid droplets in APP which are subsequently responsible to control major characteristics of surface coating depositions. Coalescence of water droplets is more dominant than Hexamethyldisiloxane (HMDSO) droplets because of its sluggish rate of evaporation. A disparity in the performance of evaporation is identified in two independent mediums, such as gas mixture and discharge plasma using HMDSO precursor. The length of evaporation of droplets is amplified by an increment of gas flow rate indicating with a reduction in the gas temperature and electron mean energy. In particular, the spatio‐temporal density distributions of charged particles show a clear pattern in which the typical nitrogen impurity ions are primarily effective as compared to other helium ionic species along the pulse of droplets in APP. Finally, we contrast the behavior of discharge species in the pure helium and He‐N2 gas mixtures revealing the importance of stepwise and Penning ionization processes. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Laser-induced fluorescence (LIF)-based spray volume and droplet-size measurements rely on assumptions about the evaporation or accumulation of fluorescent tracers during the evaporation of the droplets. We investigate the time-dependent variation of droplet-size and LIF signal intensity of CO2-laser-heated evaporating water droplets doped with rhodamine 6G. After an initial decrease of fluorescence intensity by 30% due to temperature-dependent diffusion of oxygen into the droplets, the LIF signal remains constant, indicating that the tracers have fully accumulated in the droplet. This evaporation-independent signal can be used as a reference for Mie-scattering-based droplet surface-area measurements that will allow the sensitive observation of spray evaporation and droplet breakup. PACS 42.62.Fi; 32.50.+d; 42.62.Cf  相似文献   

11.
We derive equations for multicomponent fuel evaporation in airborne fuel droplets and wall films, and implement the model into KIVA-3V. Temporal and spatial variations in liquid droplet composition and temperature are not modelled but solved for by discretizing the interior of the droplet in an implicit and computationally efficient way. We find that an interior discretization is necessary to correctly compute the evolution of the droplet composition. The details of the one-dimensional numerical algorithm are described. Numerical simulations of multicomponent evaporation are performed for single droplets and compared to experimental data.  相似文献   

12.
Direct Numerical Simulations of expanding flame kernels following localized ignition in decaying turbulence with the fuel in the form of a fine mist have been performed to identify the effects of the spray parameters on the possibility of self-sustained combustion. Simulations show that the flame kernel may quench due to fuel starvation in the gaseous phase if the droplets are large or if their number is insufficient to result in significant heat release to allow for self-sustained flame propagation for the given turbulent environment. The reaction proceeds in a large range of equivalence ratios due to the random location of the droplets relative to the igniter location that causes a wide range of mixture fractions to develop through pre-evaporation in the unreacted gas and through evaporation in the preheat zone of the propagating flame. The resulting flame exhibits both premixed and non-premixed characteristics.  相似文献   

13.
We put in evidence the unexpected behavior of Leidenfrost droplets at the later stage of their evaporation. We predict and observe that, below a critical size R_{l}, the droplets spontaneously take off due to the breakdown of the lubrication regime. We establish the theoretical relation between the droplet radius and its elevation. We predict that the vapor layer thickness increases when the droplets become smaller. A satisfactory agreement is found between the model and the experimental results performed on droplets of water and of ethanol.  相似文献   

14.
本文利用微区拉曼技术,研究硫酸镁液滴水和重水交换的动力学.在低湿度时,由接触离子对连接形成的链状结构使硫酸镁液滴表面形成胶态结构,阻碍其与环境之间的水交换,造成表面和内部的结构差异.拉曼光谱的高空间分辨能力为观测这一特殊的表面结构提供了便利.沉积在聚四氟乙烯疏水基底上的硫酸镁重水液滴呈球形,可以实现对液滴表面和中心的两...  相似文献   

15.
液滴发生器产生液滴的尺寸和间距影响液滴层的辐射和蒸发特性,液滴尺寸及间距的可控性值得重点关注。根据Weber的射流不稳定修正方程,确定了均匀液滴流产生的无量纲波数及扰动频率范围,结合射流质量守恒,分析了均匀液滴流中液滴的尺寸和间距与无量纲波数的关系。在不同喷孔直径和射流压力下,对理论和实验结果进行了对比,验证了液滴尺寸和液滴间距的理论计算结果,为液滴层辐射蒸发特性的研究提供了依据。  相似文献   

16.
This study examines the effect of turbulence on the ignition of multicomponent surrogate fuels and its role in modifying preferential evaporation in multiphase turbulent spray environments. To this end, two zero-dimensional droplet models are considered that are representative of asymptotic conditions of diffusion limit and the distillation limit are considered. The coupling between diffusion, evaporation and combustion is first identified using a scale analysis of 0D homogeneous batch reactor simulations. Subsequently, direct numerical simulations of homogeneously dispersed multicomponent droplets are performed for both droplet models, in decaying isotropic turbulence and at quiescent conditions to examine competing time scale effects arising from evaporation, ignition and turbulence. Results related to intra-droplet transport and effects of turbulence on autoignition and overall combustion are studied using an aviation fuel surrogate. Depending on the characteristic scale, it is shown that turbulence can couple through modulation of evaporation time or defer the ignition phase as a result of droplet cooling or gas-phase homogenization. Both preferential evaporation and turbulence are found to modify the ignition delay time, up to a factor of two. More importantly, identical droplet ignition behavior in homogeneous gas phase can imply fundamentally different combustion modes in heterogeneous environments.  相似文献   

17.
A predictive model was developed for investigation of high-temperature heating and evaporation of water droplets. The model takes into account the basic interrelated processes of heat transfer and phase transitions. Typical velocity and temperature profiles were found in the high-temperature gas–water droplet system with external gas medium temperature varied from 100 to 800°C. Various formulations of the problem, significantly different in the type of considered processes and factors, are considered.We analyzed temperature conditions of heating and evaporation of water droplets, which allow the use of simplified models and which need consideration of all complex interrelated processes of heat and mass transfer (including convection, conduction and radiant heat transfer in droplets, and also in the surface vapor–gas layer).  相似文献   

18.
During a colloidal droplet evaporation, a sol–gel transition can be observed and is described by the desiccation time τD and the gelation time τG. These characteristic times, which can be linked to viscoelastic properties of the droplet and to its composition, are classically rated by analysis of mass droplet evolution during evaporation. Even if monitoring mass evolution versus time seems straightforward, this approach is very sensitive to environmental conditions (vibrations, air flow…) as mass has to be evaluated very accurately using ultra-sensitive weighing scales. In this study we investigated the potentialities of ultrasonic shear reflectometry to assess τD and τG in a simple and reliable manner. In order to validate this approach, our study has focused on blood droplets evaporation on which a great deal of work has recently been published. Desiccation and gelation times measured with shear ultrasonic reflectometry have been perfectly correlated to values obtained from mass versus time analysis. This ultrasonic method which is not very sensitive to environmental perturbations is therefore very interesting to monitor the drying of blood droplets in a simple manner and is more generally suitable for complex fluid droplets evaporation investigation.  相似文献   

19.
In many applications, the shape of a droplet may be assumed to be an oblate spheroid. A theoretical study is conducted on the evaporation of an oblate spheroidal droplet under forced convection conditions. Closed-form analytical expressions of the mass evaporation rate for an oblate spheroid are derived, in the regime of controlled mass-transfer and heat-transfer, respectively. The variation of droplet size during the evaporation process is presented in the regime of shrinking dynamic model. Comparing with the droplets having the same surface area, an increase in the aspect ratio enhances the mass evaporation rate and prolongs the burnout time.  相似文献   

20.
Experimental evidence seems to indicate that the life of a laminar spherical flame front propagating through a fresh mixture of air and liquid fuel droplets can be roughly split into three stages: (1) ignition, (2) radial propagation with a smooth flame front and (3) propagation with flame front cellularization and/or pulsation. In this work, the second stage is analysed using the slowly varying flame approach, for a fuel rich flame. The droplets are presumed to vaporize in a sharp front ahead of the reaction front. Evolution equations for the flame and evaporation fronts are derived. For the former the combined effect of heat loss due to droplet vaporization and radiation plays a dominant explicit role. In addition, the structure of the evaporation front is deduced using asymptotics based on a large parameter associated with spray vaporization. Numerical calculations based on the analysis point to the way in which the spray modifies conditions for flame front extinction. Within the framework of the present simplified model the main relevant parameters turn out to be the initial liquid fuel load in the fresh mixture and/or the latent heat of vaporization of the fuel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号