首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we present a new general formulation for multiobjective optimization that can accommodate several interactive methods of different types (regarding various types of preference information required from the decision maker). This formulation provides a comfortable implementation framework for a general interactive system and allows the decision maker to conveniently apply several interactive methods in one solution process. In other words, the decision maker can at each iteration of the solution process choose how to give preference information to direct the interactive solution process, and the formulation enables changing the type of preferences, that is, the method used, whenever desired. The first general formulation, GLIDE, included eight interactive methods utilizing four types of preferences. Here we present an improved version where we pay special attention to the computational efficiency (especially significant for large and complex problems), by eliminating some constraints and parameters of the original formulation. To be more specific, we propose two new formulations, depending on whether the multiobjective optimization problem to be considered is differentiable or not. Some computational tests are reported showing improvements in all cases. The generality of the new improved formulations is supported by the fact that they can accommodate six interactive methods more, that is, a total of fourteen interactive methods, just by adjusting parameter values.  相似文献   

2.
Most interactive methods developed for solving multiobjective optimization problems sequentially generate Pareto optimal or nondominated vectors and the decision maker must always allow impairment in at least one objective function to get a new solution. The NAUTILUS method proposed is based on the assumptions that past experiences affect decision makers’ hopes and that people do not react symmetrically to gains and losses. Therefore, some decision makers may prefer to start from the worst possible objective values and to improve every objective step by step according to their preferences. In NAUTILUS, starting from the nadir point, a solution is obtained at each iteration which dominates the previous one. Although only the last solution will be Pareto optimal, the decision maker never looses sight of the Pareto optimal set, and the search is oriented so that (s)he progressively focusses on the preferred part of the Pareto optimal set. Each new solution is obtained by minimizing an achievement scalarizing function including preferences about desired improvements in objective function values. NAUTILUS is specially suitable for avoiding undesired anchoring effects, for example in negotiation support problems, or just as a means of finding an initial Pareto optimal solution for any interactive procedure. An illustrative example demonstrates how this new method iterates.  相似文献   

3.
Interactive multiobjective optimization methods have provided promising results in the literature but still their implementations are rare. Here we introduce a core structure of interactive methods to enable their convenient implementation. We also demonstrate how this core structure can be applied when implementing an interactive method using a modeling environment. Many modeling environments contain tools for single objective optimization but not for interactive multiobjective optimization. Furthermore, as a concrete example, we present GAMS-NIMBUS Tool which is an implementation of the classification-based NIMBUS method for the GAMS modeling environment. So far, interactive methods have not been available in the GAMS environment, but with the GAMS-NIMBUS Tool we open up the possibility of solving multiobjective optimization problems modeled in the GAMS modeling environment. Finally, we give some examples of the benefits of applying an interactive method by using the GAMS-NIMBUS Tool for solving multiobjective optimization problems modeled in the GAMS environment.  相似文献   

4.
A new version of an interactive NIMBUS method for nondifferentiable multiobjective optimization is described. It is based on the reference point idea and the classification of the objective functions. The original problem is transformed into a single objective form according to the classification information. NIMBUS has been designed especially to be able to handle complicated real-life problems in a user-friendly way.The NIMBUS method is used for solving an optimal control problem related to the continuous casting of steel. The main goal is to minimize the defects in the final product. Conflicting objective functions are constructed according to certain metallurgical criteria and some technological constraints. Due to the phase changes during the cooling process there exist discontinuities in the derivative of the temperature distribution. Thus, the problem is nondifferentiable.Like many real-life problems, the casting model is large and complicated and numerically demanding. NIMBUS provides an efficient way of handling the difficulties and, at the same time, aids the user in finding a satisficing solution. In the end, some numerical experiments are reported and compared with earlier results.  相似文献   

5.
In this paper, we propose two kinds of robustness concepts by virtue of the scalarization techniques (Benson’s method and elastic constraint method) in multiobjective optimization, which can be characterized as special cases of a general non-linear scalarizing approach. Moreover, we introduce both constrained and unconstrained multiobjective optimization problems and discuss their relations to scalar robust optimization problems. Particularly, optimal solutions of scalar robust optimization problems are weakly efficient solutions for the unconstrained multiobjective optimization problem, and these solutions are efficient under uniqueness assumptions. Two examples are employed to illustrate those results. Finally, the connections between robustness concepts and risk measures in investment decision problems are also revealed.  相似文献   

6.
For decision making problems involving uncertainty, both stochastic programming as an optimization method based on the theory of probability and fuzzy programming representing the ambiguity by fuzzy concept have been developing in various ways. In this paper, we focus on multiobjective linear programming problems with random variable coefficients in objective functions and/or constraints. For such problems, as a fusion of these two approaches, after incorporating fuzzy goals of the decision maker for the objective functions, we propose an interactive fuzzy satisficing method for the expectation model to derive a satisficing solution for the decision maker. An illustrative numerical example is provided to demonstrate the feasibility of the proposed method.  相似文献   

7.
The reference point-based methods form one of the most widely used class of interactive procedures for multiobjective programming problems. The achievement scalarizing functions used to determine the solutions at each iteration usually include weights. In this paper, we have analysed nine weighting schemes from the preferential point of view, that is, examining their performance in terms of which reference values are given more importance and why. As a result, we have carried out a systematic classification of the schemes attending to their preferential meaning. This way, we distinguish pure normalizing schemes from others where the weights have a preferential interpretation. This preferential behaviour can be either designed (thus, predetermined) by the method, or decided by the decision maker. Besides, several figures have been used to illustrate the way each scheme works. This paper enables the potential users to choose the most appropriate scheme for each case.  相似文献   

8.
In this paper, we present an interactive algorithm (ISTMO) for stochastic multiobjective problems with continuous random variables. This method combines the concept of probability efficiency for stochastic problems with the reference point philosophy for deterministic multiobjective problems. The decision maker expresses her/his references by dividing the variation range of each objective into intervals, and by setting the desired probability for each objective to achieve values belonging to each interval. These intervals may also be redefined during the process. This interactive procedure helps the decision maker to understand the stochastic nature of the problem, to discover the risk level (s)he is willing to assume for each objective, and to learn about the trade-offs among the objectives.  相似文献   

9.
One of the main tools for including decision maker (DM) preferences in the multiobjective optimization (MO) literature is the use of reference points and achievement scalarizing functions [A.P. Wierzbicki, The use of reference objectives in multiobjective optimization, in: G. Fandel, T. Gal (Eds.), Multiple-Criteria Decision Making Theory and Application, Springer-Verlag, New York, 1980, pp. 469–486.]. The core idea in these approaches is converting the original MO problem into a single-objective optimization problem through the use of a scalarizing function based on a reference point. As a result, a single efficient point adapted to the DM’s preferences is obtained. However, a single solution can be less interesting than an approximation of the efficient set around this area, as stated for example by Deb in [K. Deb, J. Sundar, N. Udaya Bhaskara Rao, S. Chaudhuri, Reference point based multiobjective optimization using evolutionary algorithms, International Journal of Computational Intelligence Research, 2(3) (2006) 273–286]. In this paper, we propose a variation of the concept of Pareto dominance, called g-dominance, which is based on the information included in a reference point and designed to be used with any MO evolutionary method or any MO metaheuristic. This concept will let us approximate the efficient set around the area of the most preferred point without using any scalarizing function. On the other hand, we will show how it can be easily used with any MO evolutionary method or any MO metaheuristic (just changing the dominance concept) and, to exemplify its use, we will show some results with some state-of-the-art-methods and some test problems.  相似文献   

10.
This paper presents the conic scalarization method for scalarization of nonlinear multi-objective optimization problems. We introduce a special class of monotonically increasing sublinear scalarizing functions and show that the zero sublevel set of every function from this class is a convex closed and pointed cone which contains the negative ordering cone. We introduce the notion of a separable cone and show that two closed cones (one of them is separable) having only the vertex in common can be separated by a zero sublevel set of some function from this class. It is shown that the scalar optimization problem constructed by using these functions, enables to characterize the complete set of efficient and properly efficient solutions of multi-objective problems without convexity and boundedness conditions. By choosing a suitable scalarizing parameter set consisting of a weighting vector, an augmentation parameter, and a reference point, decision maker may guarantee a most preferred efficient or properly efficient solution.  相似文献   

11.
A successful application of the interactive multiobjective optimization method NIMBUS to a design problem in papermaking technology is described. Namely, an optimal shape design problem related to the paper machine headbox is studied. First, the NIMBUS method, the numerical headbox model, and the associated multiobjective optimization problem are described. Then, the results of numerical experiments are presented.  相似文献   

12.
This paper presents an interactive method for solving general 0-1 multiobjective linear programs using Simulated Annealing and Tabu Search. The interactive protocol with the decision maker is based on the specification of reservation levels for the objective function values. These reservation levels narrow the scope of the search in each interaction in order to identify regions of major interest to the decision maker. Metaheuristic approaches are used to generate potentially nondominated solutions in the computational phases. Generic versions of Simulated Annealing and Tabu Search for 0-1 single objective linear problems were developed which include a general routine for repairing unfeasible solutions. This routine improves significantly the results of single objective problems and, consequently, the quality of the potentially nondominated solutions generated for the multiobjective problems. Computational results and examples are presented.  相似文献   

13.
This paper makes a review of interactive methods devoted to multiobjective integer and mixed-integer programming (MOIP/MOMIP) problems. The basic concepts concerning the characterization of the non-dominated solution set are first introduced, followed by a remark about non-interactive methods vs. interactive methods. Then, we focus on interactive MOIP/MOMIP methods, including their characterization according to the type of preference information required from the decision maker, the computing process used to determine non-dominated solutions and the interactive protocol used to communicate with the decision maker. We try to draw out some contrasts and similarities of the different types of methods.  相似文献   

14.
The success of the reference point scheme within interactive techniques for multiobjective programming problems is unquestionable. However, so far, the different achievement scalarizing functions are, more or less, extensions of the Tchebychev distance. The reason for this is the ability of this function to determine efficient solutions and to support every efficient solution of the problem. For the same reasons, no additive scheme has yet been used in reference point-based interactive methods. In this paper, an additive achievement scalarizing function is proposed. Theoretical results prove that this function supports every efficient solution, and conditions are given under which the efficiency of each solution is guaranteed. Some examples and computational tests show the different behaviours of the Tchebychev and additive approaches, and an additive reference point interactive algorithm is proposed.  相似文献   

15.
《Optimization》2012,61(3):335-358
In this article, we study the bi-level linear programming problem with multiple objective functions on the upper level (with particular focus on the bi-objective case) and a single objective function on the lower level. We have restricted our attention to this type of problem because the consideration of several objectives at the lower level raises additional issues for the bi-level decision process resulting from the difficulty of anticipating a decision from the lower level decision maker. We examine some properties of the problem and propose a methodological approach based on the reformulation of the problem as a multiobjective mixed 0–1 linear programming problem. The basic idea consists in applying a reference point algorithm that has been originally developed as an interactive procedure for multiobjective mixed-integer programming. This approach further enables characterization of the whole Pareto frontier in the bi-objective case. Two illustrative numerical examples are included to show the viability of the proposed methodology.  相似文献   

16.
In this paper, we focus on multiobjective nonconvex nonlinear programming problems and present an interactive fuzzy satisficing method through floating point genetic algorithms. After determining the fuzzy goals of the decision maker, if the decision maker specifies the reference membership values, the corresponding Pareto optimal solution can be obtained by solving the augmented minimax problems for which the floating point genetic algorithm, called GENOCOP III, is applicable. In order to overcome the drawbacks of GENOCOP III, we propose the revised GENOCOP III by introducing a method for generating an initial feasible point and a bisection method for generating a new feasible point efficiently. Then an interactive fuzzy satisficing method for deriving a satisficing solution for the decision maker efficiently from a Pareto optimal solution set is presented together with an illustrative numerical example.  相似文献   

17.
A method called PAINT is introduced for computationally expensive multiobjective optimization problems. The method interpolates between a given set of Pareto optimal outcomes. The interpolation provided by the PAINT method implies a mixed integer linear surrogate problem for the original problem which can be optimized with any interactive method to make decisions concerning the original problem. When the scalarizations of the interactive method used do not introduce nonlinearity to the problem (which is true e.g., for the synchronous NIMBUS method), the scalarizations of the surrogate problem can be optimized with available mixed integer linear solvers. Thus, the use of the interactive method is fast with the surrogate problem even though the problem is computationally expensive. Numerical examples of applying the PAINT method for interpolation are included.  相似文献   

18.
A new model for practical decision problems is presented. It allows one to consider lexicographic preference structures by introducing the new class of piecewise lexicographic functions which impose a total order in the objective-and-constraint space. In this way, the concepts of objective and constraints are merged into a new unified notion of co-objective. Moreover, the lexicographic preference structure may be applied not only among different coobjectives, but also among different ranges of the same decision variable. The main merits of this model appear to be its versatility (it is able to deal with different types of multiobjective optimization situations without requiring user interaction) and its compactness (it does not require one to increase the original number of decision variables and constraints). A linear version of the model is investigated in more detail.  相似文献   

19.
In multiobjective optimization methods, the multiple conflicting objectives are typically converted into a single objective optimization problem with the help of scalarizing functions and such functions may be constructed in many ways. We compare both theoretically and numerically the performance of three classification-based scalarizing functions and pay attention to how well they obey the classification information. In particular, we devote special interest to the differences the scalarizing functions have in the computational cost of guaranteeing Pareto optimality. It turns out that scalarizing functions with or without so-called augmentation terms have significant differences in this respect. We also collect a set of mostly nonlinear benchmark test problems that we use in the numerical comparisons.  相似文献   

20.
This paper considers multiobjective integer programming problems where each coefficient of the objective functions is expressed by a random fuzzy variable. A new decision making model is proposed by incorporating the concept of probability maximization into a possibilistic programming model. For solving transformed deterministic problems, genetic algorithms with double strings for nonlinear integer programming problems are introduced. An interactive fuzzy satisficing method is presented for deriving a satisficing solution to a decision maker by updating the reference probability levels. An illustrative numerical example is provided to clarify the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号