首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Electrospray ionization mass spectrometry was used to develop a rapid, sensitive, and accurate method for determination and identification of hepatotoxic microcystins, cyanobacterial cyclic heptapeptides. To optimize the electrospray ionization conditions, factors affecting charge state distribution, such as amino acid components of sample, proton affinity of the additives, and additive concentration, were investigated in detail and a method for controlling charge states was developed to provide molecular-related ions for assignment of molecular weight and reasonably abundant precursor ions for MS/MS analysis. A procedure for identification of microcystins consisting of known amino acids was proposed: for microcystins giving abundant [M + 2H]2+ ions, the addition of nitrogen-containing bases to the aqueous sample solution is effective to obtain an increased intensity of [M + H]+ ions, whereas the addition of Lewis acids containing nitrogen can produce increased abundances of [M + 2H]2+ ions for microcystins giving weak [M + 2H]2+ ions. Microcystins possessing no arginine residue always give sodium adduct ions [M + Na]+ as the base peak, and these are difficult to fragment via low energy collision-induced dissociation to yield structurally informative products; the addition of oxalic acid increases [M + H]+ ion abundances, and these fragment readily.  相似文献   

2.
[M + Cu]+ peptide ions formed by matrix-assisted laser desorption/ionization from direct desorption off a copper sample stage have sufficient internal energy to undergo metastable ion dissociation in a time-of-flight mass spectrometer. On the basis of fragmentation chemistry of peptides containing an N-terminal arginine, we propose the primary Cu+ ion binding site is the N-terminal arginine with Cu+ binding to the guanidine group of arginine and the N-terminal amine. The principal decay products of [M + Cu]+ peptide ions containing an N-terminal arginine are [a(n) + Cu - H]+ and [b(n) + Cu - H]+ fragments. We show evidence to suggest that [a(n) + Cu - H]+ fragment ions are formed by elimination of CO from [b(n) + Cu - H]+ ions and by direct backbone cleavage. We conclude that Cu+ ionizes the peptide by attaching to the N-terminal arginine residue; however, fragmentation occurs remote from the Cu+ ion attachment site involving metal ion promoted deprotonation to generate a new site of protonation. That is, the fragmentation reactions of [M + Cu]+ ions can be described in terms of a "mobile proton" model. Furthermore, proline residues that are adjacent to the N-terminal arginine do not inhibit formation of [b(n) + Cu - H]+ ion, whereas proline residues that are distant to the charge carrying arginine inhibit formation of [b(n) + Cu - H]+ ions. An unusual fragment ion, [c(n) + Cu + H]+, is also observed for peptides containing lysine, glutamine, or asparagine in close proximity to the Cu+ carrying N-terminal arginine. Mechanisms for formation of this fragment ion are also proposed.  相似文献   

3.
Derivatives were prepared from N-linked glycans by reductive amination from 2-aminobenzamide, 2-aminopyridine, 3-aminoquinoline, 2-aminoacridone, 4-amino-N-(2-diethylaminoethyl)benzamide, and the methyl, ethyl, and butyl esters of 4-aminobenzoic acid. Their electrospray and collision-induced dissociation (CID) fragmentation spectra were examined with a Q-TOF mass spectrometer. The strongest signals were obtained from the [M + Na]+ ions for all derivatives except sugars derivatized with 4-amino-N-(2-diethylaminoethyl)benzamide which gave very strong doubly charged [M + H + Na]2+ ions. The strongest [M + Na]+ ion signals were obtained from the butyl ester of 4-aminobenzoic acid and the weakest from 2-aminopyridine. The most informative spectra were recorded from the [M + Li]+ or [M + Na]+ ions. These spectra were dominated by ions produced by sequence-revealing glycosidic cleavages and "internal" fragments. Linkage-revealing cross-ring cleavage ions were reasonably abundant, particularly from high-mannose glycans. Although the nature of the derivative was found to have little effect upon the fragmentation pattern, 3-aminoquinoline derivatives gave marginally more abundant cross-ring fragments than the other derivatives. [M + H]+ ions formed only glycosidic fragments with few, if any, cross-ring cleavage ions. Doubly charged molecular ions gave less informative spectra; singly charged fragments were weak, and molecular ions containing hydrogen ([M + 2H]2+ and [M + H + Na]2+) fragmented as the [M + H]+ singly charged ions with no significant cross-ring cleavages.  相似文献   

4.
The tandem mass spectra of the divalent metal ion (Mg2+, Ca2+, Sr2+, Ba2+, Mn2+, Ni2+, Co2+ and Zn2+) adducts of acetylated 1,2-trans-glycosyl sulfides, sulfoxides and sulfones were examined using low energy collision-induced dissociation on a Quattro II quadrupole tandem mass spectrometer. Abundant doubly charged ions, such as [3M + Met]2+ and [2M + Met]2+, were observed with alkaline earth metal chlorides. The other ions observed were [M + MetCl]+, [M + MetOAc]+, [M + MetO2SPh]+ and [2M + MetCl]+. The deprotonated metal adducts [M + Met-H]+ were seen only in the sulfones. The divalent metal ion adducts showed characteristic fragmentation pathways for the glycosyl sulfides, sulfoxides and sulfones, depending on the site of metal attachment. The doubly charged metal ion adducts dissociate to two singly charged ions, [M + MetOAc]+ and [M - OAc]+, in the sulfides and sulfoxides. In the sulfones, the adducts dissociate to [M + MetO2SPh]+ and [M - O2SPh]+. In contrast to the alkaline earth metals, which attach to the acetoxy functions, the transition metals attach to the sulfide and sulfoxide functions. The metal chloride adducts display characteristic fragmentation for the sulfides, sulfoxides and sulfones. The glucosyl, mannosyl and galactosyl sulfides, sulfoxides and sulfones could be differentiated on the basis of the stereochemically controlled MS/MS fragmentations of the metal chloride adducts.  相似文献   

5.
The complexes formed between chromium(III) and synthetic acidic peptides were studied by sustained off-resonance irradiation collision-induced dissociation (SORI-CID) in a Fourier transform ion-cyclotron resonance (FT-ICR) mass spectrometer equipped with electrospray ionization (ESI). Neutral peptides and peptides containing one, two, and multiple acidic residues were studied. Formation of [M + Cr-2H]+ occurred for all peptides. Three noteworthy features were found in the CID spectra of [M + Cr-2H]+. The first is that fewer fragment ions were produced from [M + Cr-2H]+ than from [M + H]+. The reason may be that multiple coordination between chromium(III) and carboxylate or carbonyl groups hinders the production of fragment ions by continuing to bind pieces of the peptide to chromium(III) after cleavage of bonds within the peptide. The second feature is loss of CO from [M + Cr-2H]+ and [y(n) + Cr-H]+. A mechanism involving coordination of chromium(III) with carboxylate groups is proposed to rationalize elimination of CO. The third feature is that chromium(III) is retained in all fragment ions, indicating strong binding of the metal ion to the peptides. The complex [M + 2Cr-5H]+ is formed as the peptide chain length and number of acidic residues increases. Longer peptides have more sites to coordinate with chromium(III) and more conformational flexibility. In addition, formation of [M + Cr-2H]+ from AGGAAAA-OCH(3), which has no carboxylic acid groups, suggests that chromium(III) can coordinate with sites on the peptide backbone, albeit in low abundance. In the negative mode, [M + Cr-4H](-) was only found for peptides containing four or more carboxylic acid groups. This is consistent with deprotonated carboxylic acid groups being involved in chromium(III) coordination and with chromium existing in the 3 + state in the gas-phase ions.  相似文献   

6.
Cationic metal species normally function as Lewis acids, accepting electron density from bound electron-donating ligands, but they can be induced to function as electron donors relative to dioxygen by careful control of the oxidation state and ligand field. In this study, cationic vanadium(IV) oxohydroxy complexes were induced to function as Lewis bases, as demonstrated by addition of O2 to an undercoordinated metal center. Gas-phase complex ions containing the vanadyl (VO2+), vanadyl hydroxide (VOOH+), or vanadium(V) dioxo (VO2+) cation and nitrile (acetonitrile, propionitrile, butyronitrile, or benzonitrile) ligands were generated by electrospray ionization (ESI) for study by multiple-stage tandem mass spectrometry. The principal species generated by ESI were complexes with the formula [VO(L)n]2+, where L represents the respective nitrile ligands and n=4 and 5. Collision-induced dissociation (CID) of [VO(L)5]2+ eliminated a single nitrile ligand to produce [VO(L)4]2+. Two distinct fragmentation pathways were observed for the subsequent dissociation of [VO(L)4]2+. The first involved the elimination of a second nitrile ligand to generate [VO(L)3]2+, which then added neutral H2O via an association reaction that occurred for all undercoordinated vanadium complexes. The second [UO(L)4]2+ fragmentation pathway led instead to the formation of [VOOH(L)2]+ through collisions with gas-phase H2O and concomitant losses of L and [L+H]+. CID of [VOOH(L)2]+ caused the elimination of a single nitrile ligand to generate [VOOH(L)]+, which rapidly added O2 (in addition to H2O) by a gas-phase association reaction. CID of [VONO3(L)2]+, generated from spray solutions created by mixing VOSO4 and Ba(NO3)2 (and precipitation of BaSO4), caused elimination of NO2 to produce [VO2(L)2]+. CID of [VO2(L)2]+ produced elimination of a single nitrile ligand to form [VO2(L)]+, a V(V) analogue to the O2-reactive V(IV) species [VOOH(L)]+; however, this V(V) complex was unreactive with O2, which indicates the requirement for an unpaired electron in the metal valence shell for O2 addition. In general, the [VO2(L)2]+ species required higher collisions energies to liberate the nitrile ligand, suggesting that they are more strongly bound than the [VOOH(L)2]+ counterparts.  相似文献   

7.
Maltoheptaose and several N-linked glycans were ionized by electrospray as adducts with the divalent cations Mg2+, Ca2+, Mn2+, Co2+ and Cu2+. [M + metal]2+ ions were the major species in all cases with calcium giving the highest sensitivity. In addition, copper gave [M + Cu]+ ions. Other cations gave singly charged ions only by elimination of a protonated monosaccharide. Fragmentation of the [M + metal]2+ ions produced both singly and doubly charged ions with the relative abundance of doubly charged ions decreasing in the order Ca > Mg > Mn > Co > Cu. Singly charged ions were formed by elimination of a protonated monosaccharide residue followed, either by successive monosaccharide residue losses, or by a 2,4A cross-ring cleavage of the reducing-terminal monosaccharide. Formation of doubly charged fragments from [M + metal]2+ ions involved successive monosaccharide-residue losses either with or without O,2A or 2,4A cross-ring cleavages of the reducing-terminal monosaccharide. Abundant diagnostic doubly charged ions formed by loss of the 3-antenna from the O,2A cross-ring product were specific to [M + Ca]2+ ions. Fragmentation of [M + Cu]+ ions was similar to that of the corresponding [M + H]+ ions in that most cross-ring fragments were absent.  相似文献   

8.
刺五加寡糖的电喷雾多级串联质谱研究   总被引:2,自引:0,他引:2  
采用小柱层析法从刺五加中分离得到刺五加寡糖类系列化合物(刺五加二糖刺五加六糖).实验结果表明,在正离子模式下的ESI-MS谱中,此类化合物呈现出特征的加合离子峰簇[M+Na]+/[M+K]+或[M+H2O+Na]+/[M+H2O+K]+,可以确定其分子量;在负离子模式下的ESI-MS谱中,刺五加寡糖易形成[M-H]-/[M+nH2O-H]-(n<3).还利用电喷雾多级串联质谱(ESI-MSn)对刺五加三糖进行了系统的研究,推断出刺五加三糖的组成与结构.  相似文献   

9.
The role of propionitrile in the production of [M+H]+ under atmospheric pressure photoionization (APPI) was investigated. In dopant-assisted APPI using acetone and anisole, protonated acetone and anisole radical cations were the most prominent ions observed. In dopant-free or direct APPI in acetonitrile, however, a major ion in acetonitrile was detected and identified as propionitrile, using high accuracy mass measurement and collision induced dissociation studies. Vaporizing ca. 10(-5) M althiazide and bendroflumethazide under direct APPI in acetonitrile produced their corresponding protonated species [M+H]+. In addition to protonated acetonitrile, its dimers, and acetonitrile/water clusters, protonated propionitrile, propionitrile dimer, and propionitrile/water clusters were also observed. The role of propionitrile, an impurity in acetonitrile and/or a possible product of ion-molecule reaction, in the production of [M+H]+ of althiazide and bendroflumethazide was further investigated in the absence of dopant using propionitrile-d5. The formation of [M+D]+ species was observed, suggesting a possible role of propionitrile in the protonation process. Additionally, an increase in the [M+H]+ signal of althiazide and bendroflumethazide was observed as a function of propionitrile concentration in acetonitrile. Theoretical data from the literature supported the assumption that one possible mechanism, among others, for the formation of [M+H]+ could be attributed to photo-initiated isomerization of propionitrile. The most stable isomers of propionitrile, based on their calculated ionization energy (IE) and relative energy (DeltaE), were assumed to undergo proton transfer to the analytes, and mechanisms were proposed.  相似文献   

10.
We have acquired multi-stage mass spectra (MSn) of four branched N-glycans derived from human serum IgG by matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight mass spectrometry (MALDI-QIT-TOF-MS) in order to demonstrate high sensitivity structural analysis. [M+H]+ and [M+Na]+ ions were detected in the positive mode. The detection limit of [M+Na]+ in MS/MS and MS3 measurements for structural analysis was found to be 100 fmol, better than that for [M+H]+. The [M+H]+ ions subsequently fragmented to produce predominantly a Y series of fragments, whereas [M+Na]+ ions fragmented to give a complex mixture of B and Y ions together with some cross-ring fragments. Three features of MALDI-QIT-CID fragmentation of [M+Na]+ were cleared by the analysis of MS/MS, MS3 and MS4 spectra: (1) the fragment ions resulting from the breaking of a bond are more easily generated than that from multi-bond dissociation; (2) the trimannosyl-chitobiose core is either hardly dissociated, easily ionized or it is easy to break a bond between N-acetylglucosamine and mannose; (3) the fragmentation by loss of only galactose from the non-reducing terminus is not observed. We could determine the existence ratios of candidates for each fragment ion in the MS/MS spectrum of [M+Na]+ by considering these features. These results indicate that MSn analysis of [M+Na]+ ions is more useful for the analysis of complicated oligosaccharide structures than MS/MS analysis of [M+H]+, owing to the higher sensitivity and enhanced structural information. Furthermore, two kinds of glycans, with differing branch structures, could be distinguished by comparing the relative fragment ion abundances in the MS3 spectrum of [M+Na]+. These analyses demonstrate that the MSn technology incorporated in MALDI-QIT-TOF-MS can facilitate the elucidation of structure of complex branched oligosaccharides.  相似文献   

11.
The electrospray mass spectra and collision-induced fragmentation of neutral N-linked glycans obtained from glycoproteins were examined with a Q-TOF mass spectrometer. The glycans were ionized most effectively as adducts of alkali metals, with lithium providing the most abundant signal and caesium the least. Singly charged ions generally gave higher ion currents than doubly charged ions. Addition of formic acid could be used to produce [M + H]+ ions, but these ions were always accompanied by abundant cone-voltage fragments. The energy required for collision-induced fragmentation was found to increase in a linear manner as a function of mass with the [M + Na]+ ions requiring about four times as much energy as the [M + H]+ ions for complete fragmentation of the molecular ions. Fragmentation of the [M + H]+ ions gave predominantly B- and Y-type glycosidic fragments whereas the [M + Na]+ and [M + Li]+ ions produced a number of additional fragments including those derived from cross-ring cleavages. Little fragmentation was observed from the [M + K]+ and [M + Rb]+ ions and the only fragment to be observed from the [M + Cs]+ ion was Cs+. The [M + Na]+ and [M + Li]+ ions from all the N-linked glycans gave abundant fragments resulting from loss of the terminal GlcNAc moiety and prominent, though weaker, ions as the result of 0,2A and 2,4A cross-ring cleavages of this residue. Most other ions were the result of successive additional losses of residues from the non-reducing terminus. This pattern was particularly prominent with glycans containing several non-reducing GlcNAc residues where successive losses of 203 u were observed. Many of the ions in the low-mass range were products of several different fragmentation routes but still provided structural information. Possibly of most diagnostic importance was an ion formed by loss of 221 u (GlcNAc molecule) from an ion that had lost the 3-antenna and the chitobiose core. This latter ion, although coincident in mass with some other 'internal' fragments, often provided additional information on the composition of the antennae. Other ions defining antenna composition were weak cross-ring fragments produced from the core branching mannose residue. Glycans containing Gal-GlcNAc residues showed successive losses of this moiety, particularly from the B-type fragments resulting from loss of the reducing-terminal GlcNAc residue. The [M + Na]+ and [M + Li]+ ions from high-mannose and hybrid glycans gave a series of ions of composition (Man)nNa/Li+ where n = 1 to the total number of glycans in the molecule, allowing these sugars to be distinguished from the more highly processed complex glycans. Other ions in the spectra of the high-mannose glycans were diagnostic of chain branching but insufficient information was available to determine their mode of formation.  相似文献   

12.
Singly and doubly charged cluster ions of ammonium tetrafluoroborate (NH4BF4) with general formula [(NH4BF4)nNH4]+ and [(NH4BF4)m(NH4)2]2+, respectively, were generated by electrospray ionization (ESI) and their fragmentation examined using collision-induced dissociation (CID) and ion-trap tandem mass spectrometry. CID of [(NH4BF4)nNH4]+ caused the loss of one or more neutral NH4BF4 units. The n = 2 cluster, [(NH4BF4)2NH4]+, was unique in that it also exhibited a dissociation pathway in which HBF4 was eliminated to create [(NH4BF4)(NH3)NH4]+. Dissociation of [(NH4BF4)m(NH4)2]2+ occurred through two general pathways: (a) 'fission' to produce singly charged cluster ions and (b) elimination of one or more neutral NH4BF4 units to leave doubly charged product ions. CID profiles, and measurements of changing precursor and product ion signal intensity as a function of applied collision voltage, were collected for [(NH4BF4)nNH4]+ and compared with those for analogous [(NaBF4)nNa]+ and [(KBF4)nK]+ ions to determine the influence of the cation on the relative stability of cluster ions. In general, the [(NH4BF4)nNH4]+ clusters were found to be easier to dissociate than both the sodium and potassium clusters of comparable size, with [(KBF4)nK]+ ions the most difficult to dissociate.  相似文献   

13.
刘淑莹  李智立 《化学学报》1992,50(8):762-766
本文利用质量分析离子动能(MIKES)和碰撞诱导解离(CID)技术, 研究了邻、间、对二氯苯分子在电子轰击质谱(EIMS)中产生的[C6H4CI2]^2+和[C6H4CI]^2+双电荷离子的单分子电荷分离(CS)反应。根据测定和CS反应的动能释放值T和由此估算的反应过渡态的电荷间距的最小值R, 推测过渡态的结构。有趣的是, 可以利用双电荷离子[C6H4CI2]^2+的分解反应区分二氯苯的位置异构体。  相似文献   

14.
A non-covalent-bonded dimer was detected in the positive ion electrospray ionisation (ESI) mass spectra of a synthetic impurity. In tandem mass spectrometry (MS/MS) experiments using collision-induced dissociation (CID), the ion was found to behave as a [M+H]+-type precursor ion for fragmentation until MS5. The dimer was probably formed through multi-hydrogen bonds over a proton bridge. When the fragmentation occurred at the center of the bridge, the dimer was broken apart to give monomer fragments at MS6. However, no corresponding deprotonated dimer [2M-H]- was found in the negative ion ESI spectra. The dimer was extremely stable, and it could still be observed when a fragmentation voltage of up to 50 V was applied in the ionisation source. The formation of the non-covalent dimer was also found to be instrument-dependent, but independent of sample concentration. Accurate mass measurements of the [2M+H]+ and [M+H]+ ions, and their MSn product ions, provided the basis for assessing the fragmentation mechanism proposed for [2M+H]+. The fragmentation pathway was also illustrated for the deprotonated molecule [M-H]-.  相似文献   

15.
The mass spectra of biological molecules, whose molecular mass exceeds 10 kDa, invariably contain multiply charged ions. For example, a survey scan of a small protein will produce singly, doubly and triply protonated molecules, the intensity of the doubly charged species often being greater than that of the singly charged entity. Although the spectra resulting from doubly charged peptides have not previously been studied, collisional activation of such doubly charged species may result in significant additional information pertaining to molecular structure. The techniques employed to study ions originating from multiply charged species were linked scanning of constant B/E and tandem mass spectrometry, namely low collision energy spectra acquired on a BEQQ hybrid instrument. The methodology was applied to model compounds whose tandem mass spectrometry characteristics are well known, e.g. gramicidin S and angiotensin I. The results for the product ions of the [M + 2H]2+ species of the models were obtained which highlight the methodology required for high-mass materials.  相似文献   

16.
The competitive formation of molecular ions M and protonated molecules [M + H]+ under fast atom bombardment (FAB) conditions was examined using various kinds of organic compounds. The use of protic/hydrophilic matrices such as thioglycerol and glycerol resulted in relatively large values of the peak intensity ratio I([M + H]+)/I(M) compared with the use of relatively aprotic/hydrophobic matrices such as m-nitrobenzyl alcohol and o-nitrophenyl octyl ether. The change of matrix from thiol-containing such as thioglycerol and dithiothreitol to alcoholic such as glycerol and pentamethylene glycol increased the I([M + H]+)/I(M) ratio. Furthermore, the change of matrix increased the peak intensity ratio of the doubly charged ion [M + 2H]2+ to [M + H]+ in the FAB mass spectra of angiotensin I and gramicidin S. The addition of acids to the matrix solution increased the I([M + H]+)/I(M) ratio, although such an effect did not always occur. The acetylation of simple aniline compounds markedly increased the I([M + H]+)/I(M) ratio. It was concluded from these results that the hydrogen bonding interaction between hydroxyl groups(s) of the matrix and basic site(s) of analyte molecules in solution acts advantageously as a quasi-preformed state for [M + H]+ formation, and that the presence of significant proton acceptor(s) such as carbonyl group in analytes hinder the M formation which may generally occur under FAB conditions. The formation of M and [M + H]+ ions seemed to occur competitively, reflecting or according to the interaction or solvation states between the analyte and matrix molecules in solution and the structural characteristics of the analytes.  相似文献   

17.
The synthesis of two novel dendritic aluminum and zinc quinolates, which are soluble in common solvents, was monitored effectively by positive ion electrospray ionization mass spectrometry (ESI-MS). Through tandem mass spectrometric analysis of the complexes, distinct fragmentation pathways for sodium adduct molecular ion [M+Na]+ and protonated molecular ion [M+H]+ were observed.  相似文献   

18.
First principles electronic structure calculations have been carried out to investigate the ground state geometry, electronic structure, and the binding energy of [Au(H2O)n]+ clusters containing up to 10 H2O molecules. It is shown that the first coordination shell of Au+ contains two H2O molecules forming a H2O-Au+-H2O structure with C2 symmetry. Subsequent H2O molecules bind to the previous H2O molecules forming stable and fairly rigid rings, each composed of 4 H2O molecules, and leading to a dumbbell structure at [Au(H2O)8]+. The 9th and the 10th H2O molecules occupy locations above the Au+ cation mainly bonded to one H2O from each ring, leading to structures where the side rings are partially distorted and forming structures that resemble droplet formation around the Au+ cation. The investigations highlight quantum effects in nucleation at small sizes and provide a microscopic understanding of the observed incremental binding energy deduced from collision induced dissociation that indicates that [Au(H2O)n]+ clusters with 7-10 H2O molecules have comparable binding energy. The charge on the Au+ is shown to migrate to the outside H2O molecules, suggesting an interesting screening phenomenon.  相似文献   

19.
The electronebulization of a cobalt(II)/cysteine(Cys) mixture in water/methanol (50/50) produced mainly cobalt-cationized species. Three main groups of the Co-cationized species can be distinguished in the ESI-MS spectrum: (1) the cobalt complexes including the cysteine amino acid only (they can be singly charged, for example, [Co(Cys)n- H]+ with n = 1-3 or doubly charged such as [Co + (Cys)2]2+); (2) the cobalt complexes with methanol: [Co(CH3OH)n- H]+ with n = 1-3, [Co(CH3OH)4]2+; and (3) the complexes with the two different types of ligands: [Co(Cys)(CH3OH) - H]+. Only the singly charged complexes were observed. Collision-induced dissociation (CID) products of the [Co(Cys)2]2+, [Co(Cys)2 - H]+ and [Co(Cys) - H]+ complexes were studied as a function of the collision energy, and mechanisms for the dissociation reactions are proposed. These were supported by the results of deuterium labelling experiments and by density functional theory calculations. Since [Co(Cys) - H]+ was one of the main product ions obtained upon the CID of [Co(Cys)2]2+ and of [Co(Cys)2 - H]+ under low-energy conditions, the fragmentation pathways of [Co(Cys) - H]+ and the resulting product ion structures were studied in detail. The resulting product ion structures confirmed the high affinity of cobalt(II) for the sulfur atom of cysteine.  相似文献   

20.
Ten homologous or isomeric singly, doubly, triply and quadruply charged cationic macrocyclic complexes I-Va, bn+ (n = 1-4) formed by the coordination of [Ru(bipy)2Cl]+ to the pyridyl N-atoms of a series of meso-(phenyl)m-(meta or para-pyridyl)n-porphyrins (m + n = 4) were transferred to the gas phase and structurally characterized by electrospray ionization (ESI) mass (MS) and tandem mass (MS/MS) spectrometry. Previously known to be stable in solution and in the solid state, I-Va, bn+ are found to constitute also a new class of stable, long-lived multiply charged gas-phase ions with spatially separated charge sites. Increasing intramolecular electrostatic repulsion from Ia, b+ to IVa, b3+ facilitates in-source and tandem collision-induced dissociation (CID). However, for the quadruply charged ions Va, b4+, electrostatic repulsion is alleviated mainly by ion pairing with the CF3SO3- counterion forming the salt clusters [Va,b/CF3SO3]3+ and [Va,b/(CF3SO3)2]2+ with reduced charge states. Ion-pairing that yields [IVa,b/CF3SO3]2+ is also observed as a minor ESI process for the triply charged ions IVa, b3+. The gaseous ions I-Va, bn+ (n = 2, 3 or 4) dissociate by sequential 'charge partitioning' with the formation of two cationic fragments by the release of [Ru(bipy)2Cl]+. The meta (a) and para (b) isomers and the positional isomers II2+ and III2+ display nearly identical ESI-MS and ESI-MS/MS spectra. ESI-MS/MS of I-Va, bn+ shows that the Ru-py(P) is, intrinsically, the weakest bond since this bond breaks preferentially upon CID.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号