首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reflection of high-frequency acoustic signals from an air-sea interface with waves is considered in terms of determining travel times for acoustic tomography. Wave-induced, multi-path rays are investigated to determine how they influence the assumption that the time of the largest matched filter magnitude between the source and receiver signals is the best estimate of the arrival time of the flat-surface specular ray path. A simple reflection model is developed to consider the impact of in-plane, multi-path arrivals on the signal detected by a receiver. It is found that the number of multi-path rays between a source and receiver increases significantly with the number of times the ray paths strike the ocean surface. In test cases, there was always one of the multi-path rays that closely followed the flat-surface specular ray path. But all the multi-path rays arrive at the receiver almost simultaneously, resulting in interference with the signal from the flat-surface specular ray path. As a result, multi-path arrivals due to open ocean surface waves often distort the received signal such that maxima of matched filtering magnitudes will not always be a reliable indicator of the arrival time of flat-surface specular ray paths.  相似文献   

2.
Two‐wave symmetric Bragg‐case dynamical diffraction of a plane X‐ray wave in a crystal with third‐order nonlinear response to the electric field is considered theoretically. For certain diffraction conditions for a non‐absorbing perfect semi‐infinite crystal in the total reflection region an analytical solution is found. For the width and for the center of the total reflection region expressions on the intensity of the incidence wave are established. It is shown that in the nonlinear case the total reflection region exists below a maximal intensity of the incidence wave. With increasing intensity of the incidence wave the total reflection region's center moves to low angles and the width decreases. Using numerical calculations for an absorbing semi‐infinite crystal, the behavior of the reflected wave as a function of the intensity of the incidence wave and of the deviation parameter from the Bragg condition is analyzed. The results of numerical calculations are compared with the obtained analytical solution.  相似文献   

3.
We present a new scheme of quantum memory for optical images (spatially multimode light fields) that allows mapping the quantum state of the signal onto the long-lived coherence of the ground state of an ensemble of stationary atoms or impurity centers. The memory medium is embedded in an optical cavity with degenerate transverse modes, which increases the effective optical thickness of the medium and allows one, in principle, to store information in optically thin atomic layers. Since, in reality, storage and retrieval of limited-duration signals, including signals shorter than the lifetime of the field in the cavity, is of interest, we do not use the low-Q cavity approximation. The influence of losses due to partial reflection of the nonstationary signal field incident on a coupling mirror on the storage efficiency is considered. We used the method of approximate impedance matching, wherein losses due to reflection can be minimized by controlling the coupling parameter of the light field with memory medium in time, thus creating conditions for destructive interference of the signal and local fields on the coupling mirror. The influence of diffraction on the transverse resolution of memory at the writing and readout stages is investigated, and the number of effectively stored transverse spatial modes of the signal is estimated.  相似文献   

4.
Propagation of short pulses of electromagnetic radiation in a transparent medium with a frequency dispersion is considered for the linear and nonlinear modes. The role of back reflection of radiation in the spectral regions with the negative dielectric constant was clarified. For the nonlinear mode, the exact form of the stationary solitary wave whose profile includes a point with infinite steepness is found.  相似文献   

5.
J.A. Ogilvy 《Ultrasonics》1988,26(6):318-327
Reflection of ultrasonic beams from the faces of planar weld defects is affected by the anisotropic nature of the weld material. The simple laws of geometrical reflection no longer hold and energy may be strongly reflected into unexpected directions. This has important consequences for ultrasonic inspection techniques relying on specular signals for defect detection. In this Paper a ray tracing approach is used to study, theoretically, the expected patterns of defect reflection behaviour for several weld types and several defect locations and orientations. In general we find that when the ultrasonic beam is generated in the austenitic weld material without first passing through the base metal then the strongly reflected specular signal travels in very unexpected directions. If, however, the ultrasonic beam travels into the weld metal via the base metal then reflected signals usually occur close to the expected directions, except for vertically polarized shear waves. Furthermore, for a given weld type it is obviously useful to minimize ultrasonic ray paths within the weld material, to minimize both attenuation and curvature of ray paths.  相似文献   

6.
The phonon focusing in cubic dielectric crystals and its influence on the heat transfer in the boundary phonon scattering regime at low temperatures have been investigated. The mean free paths of phonons of different polarizations in samples of infinite and finite lengths with circular and square cross sections have been calculated in the anisotropic continuum model. For samples of infinite length with circular and square cross sections in the case of the equality of the cross-sectional areas, the angular dependences of the mean free paths normalized by the Casimir length almost completely coincide. It has been shown that the anisotropy of the mean free paths decreases significantly upon changing over from infinite samples to samples of finite length. For silicon crystals, the anisotropy of the phonon mean free paths has been analyzed for each of the branches of the phonon spectrum. It has been found that the mean free paths for phonons of each vibrational mode reach maximum values in the directions of focusing, and, in these directions, they exceed the mean free paths for phonons of the other vibrational modes.  相似文献   

7.
In the present work a three dimensional lattice theory for reflection, transmission and mode conversion of phonons at an ideal interface between to semi infinite solids is developed. The influence of the interface region is taken into account within a variational procedure. It is shown, that the reflection-and mode-conversion-rates sensitively depend on the microscopic interface model and on the distribution of mass within the unit cells. Those rates may be orders of magnitude larger than obtained by the acoustic mismatch model even in frequency regions with practically linear phonon dispersion relation. Detailed results are given for the system Germanium-Galliumarsenide.  相似文献   

8.
A semianalytical solution alternative and complementary to modal technique is presented to predict and interpret the ultrasonic pulsed-bounded-beam propagation in a solid cylinder embedded in a solid matrix. The spectral response to an inside axisymmetric velocity source of longitudinal and transversal cylindrical waves is derived from Debye series expansion of the embedded cylinder generalized cylindrical reflection/transmission coefficients. So, the transient guided wave response, synthesized by inverse double Fourier-Bessel transform, is expressed as a combination of the infinite medium contribution, longitudinal, transversal, and coupled longitudinal and transversal waveguide sidewall interactions. Simulated (f, 1/lambdaz) diagrams show the influence of the number of waveguide sidewall interactions to progressively recover dispersion curves. Besides, they show the embedding material filters specific signal portions by concentrating the propagating signal in regions where phase velocity is closer to phase velocity in steel. Then, simulated time waveforms using broadband high-frequency excitation show that signal leading portions exhibit a similar periodical pattern, for both free and embedded waveguides. Debye series-based interpretation shows that double longitudinal/transversal and transversal/longitudinal conversions govern the time waveform leading portion as well as the radiation attenuation in the surrounding cement grout. Finally, a methodology is deduced to minimize the radiation attenuation for the long-range inspection of embedded cylinders.  相似文献   

9.
Abstract

Oceanographic variability creates a weak random propagation medium for acoustic waves. The impact on acoustic transmission is becoming increasingly appreciated as the deterministic modelling of sound propagation in the ocean has become tractable and better understood. Beyond the near field (where phase fluctuations are weak) and the far field (where the scintillation index becomes saturated) multiple-scattering theory predicts that random focusing will greatly enhance the acoustic energy density over small volumetric regions, which we call ‘ribbons’. In 1986 an experiment was carried out in the eastern Mediterranean to test this prediction using acoustic propagation along distinct, resolvable ray paths. This experiment is one of the few to map the spatial structure of acoustic intensity with such a large vertical aperture, and as far as the authors are aware it remains the only experiment to attempt to detect the two-dimensional structure of the predicted focused ribbons for individual energy paths. Renewed impetus to publish the results has been provided by the recent focus on moderate- to high-frequency acoustics in near-shore and shallow-water environments. The experiment is described and high-intensity regions consistent with the theoretical predictions are reported. A 3.5 kHz pulsed signal was transmitted over ranges of 11–23 km and sampled over a vertical aperture of 250–350 m and horizontal apertures of 4–4.5 km. The acoustic signals travelling along individual ray paths developed randomly focused regions of 6–18 dB over regions with a vertical dimension of about 20 m and whose horizontal length could possibly be up to 1 km. The understanding of these features allows system limitations to be estimated quantitatively and opens up the way to their constructive tactical use. The results are applicable to many systems from towed array sonars to high-frequency bathymetric sidescan and minehunting.  相似文献   

10.
Underglaze copper‐red decoration, i.e. the copper colourant used to paint diversified patterns on the surface of a body and then covered by transparent glaze and fired at high temperature in a reductive firing environment, is famous all over the world. However, the red colouration mechanism generated by underglaze copper remains unclear. In particular, the fact that the edges of the red patterns are orange has been ignored in previous research. Here, non‐destructive analysis has been carried out on a precious fragment of early underglaze red porcelain using synchrotron radiation X‐ray fluorescence, X‐ray absorption near‐edge spectroscopy (XANES) and reflection spectrometry techniques. The results suggest that the copper content in the red region is higher than that in the orange region, and other colour generation elements do not have obvious content difference, indicating that the colour generation effect of the underglaze red product is related to the copper content. XANES analysis shows that the valence states of copper in the red and orange regions are similar and metal copper contributes to their hues. The results of reflection spectrometry demonstrate that tiny orange hues could be attributed to the Mie scatting effect. Therefore, light‐scattering effects should be considered when researching the colouration mechanism of underglaze red.  相似文献   

11.
The reflection and transmission theories of waves in pyroelectric and piezoelectric medium are studied in this paper. In general in an infinite homogeneous pyroelectric medium there are four bulk wave modes: quasi-longitudinal, two quasi-transversal and temperature waves. In an infinite homogeneous piezoelectric medium there are three bulk wave modes: quasi-longitudinal and two quasi-transversal waves. In the reflection and transmission problem there are five complex boundary conditions in the pyroelectric medium and four complex boundary conditions for the piezoelectric medium. In this paper, we find that the surface waves will be revealed in the reflection and transmission wave problem. The surface waves have the same wave vector component with the incident waves on the interface plane. The two dimensional reflection problem of waves at the interface between the semi-infinite pyroelectric medium and vacuum is researched in greater detail and a numerical example is given.  相似文献   

12.
When a free jet (or open jet) is used as a wind tunnel to simulate the effects of flight on model noise sources, it is necessary to calibrate out the effects of the free jet shear layer on the transmitted sound, since the shear layer is absent in the real flight case. In this paper, a theoretical calibration procedure for this purpose is first summarized; following this, the results of an experimental program, designed to test the validity of the various components of the calibration procedure, are described. The experiments are conducted by using a point sound source located at various axial positions within the free jet potential core. By using broadband excitation and cross-correlation methods, the angle changes associated with ray paths across the shear layer are first established. Measurements are then made simultaneously inside and outside the free jet along the proper ray paths to determine the amplitude changes across the shear layer. It is shown that both the angle and amplitude changes can be predicted accurately by theory. It is also found that internal reflection at the shear layer is significant only for large ray angles in the forward quadrant where total internal reflection occurs. Finally, the effects of sound absorption and scattering by the shear layer turbulence are also examined experimentally.  相似文献   

13.
Stray light formed by the reflection of photons on inner wall from a bright divertor region can be a serious issue in spectroscopic measurement systems in ITER. In this study, we propose a method to mitigate the influence of stray light using a ray tracing analysis. Usually, a ray tracing simulation requires a time consuming runs. We constructed transfer matrices based on the ray tracing simulation results and used them to demonstrate the influence of stray light. It is shown that the transfer matrix can be used to reconstruct the emission profile by considering the influence of the stray light without any additional ray tracing runs. Mitigation of the stray light in ITER divertor impurity monitor was demonstrated, and a method of prediction of the stray light level for the scrape off layer spectroscopy from divertor region was proposed. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
The single-photon echo (SP-echo) effect is predicted to appear in the case of three-level medium excitation by means of a single photon propagating to the medium along two optical paths with a mutual time delay surpassing the temporal duration of the photon wave packet. The quantum electrodynamical theory describing this interaction is presented and the S-matrix of the field is shown for infinite time (t=∞). Using the S-matrix approach, physical properties of the scattering field are studied. Hence, it is shown that the field has an echo signal at the ω 32 0 carrier frequency. It has been shown that the echo signal exists only in the field amplitude while being absent in its intensity behaviour. Thus, SP-echo is an interference effect and is not influenced by the energy irradiation. The problems of SP-echo detection in the gamma-region (where special generation difficulties appear) are discussed. The influence of the additional detection of theω 21 0 frequency field on the echo signal has been shown. A special case is the EPR-paradox which can appear within the echo phenomenon. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
Sensitivity kernels for receptions of broadband sound transmissions are used to study the effect of the transmitted signal on the sensitivity of the reception to environmental perturbations. A first-order Born approximation is used to obtain the pressure sensitivity of the received signal to small changes in medium sound speed. The pressure perturbation to the received signal caused by medium sound speed changes is expressed as a linear combination of single-frequency sensitivity kernels weighted by the signal in the frequency domain. This formulation can be used to predict the response of a source transmission to sound speed perturbations. The stability of time-reversal is studied and compared to that of a one-way transmission using sensitivity kernels. In the absence of multipath, a reduction in pressure sensitivity using time reversal is only obtained with multiple sources. This can be attributed both to the presence of independent paths and to cancellations that occur due to the overlap of sensitivity kernels for different source-receiver paths. The sensitivity kernel is then optimized to give a new source transmission scheme that takes into account knowledge of the medium statistics and is related to the regularized inverse filter.  相似文献   

16.
In shallow water propagation the steeper ray angles are weakened most by boundary losses. Regarding the sound intensity as a continuous function of angle it can be converted into a function of travel time to reveal the multipath pulse shape received from a remote source (one-way path) or a target (two-way path). The closed-form isovelocity pulse shape is extended here to the case of upward or downward refraction. The envelope of the earliest arrivals is roughly trapezoidal with a delayed peak corresponding to the slowest, near horizontal refracted paths. The tail of the pulse falls off exponentially (linearly in decibels) with a decay constant that depends only on the bottom reflection properties and water depth, irrespective of travel time, a useful property for geoacoustic inversion and for sonar design. The nontrivial analytical problem of inverting explicit functions of angle into explicit functions of time is solved by numerical interpolation. Thus exact solutions can be calculated numerically. Explicit closed-form approximations are given for one-way paths. Two-way paths are calculated by numerical convolution. Using the wave model C-SNAP in several broadband cases of interest it is demonstrated that these solutions correspond roughly to a depth average of multipath arrivals.  相似文献   

17.
光在光轴取向任意条件下的晶体表面透射率   总被引:2,自引:0,他引:2  
为了分析一束光在晶体表面的能量损失以及两束折射光的能量比,给出了一种求解反射率和透射率的方法。讨论了光从各向同性介质入射到单轴晶体表面时的折射和反射,注意到了e光线与e光波方向的不同,e光折射率与e光波法线折射率的不同,得出了在界面处应该满足的边界方程。在晶体光轴取向任意的条件下,给出了表明各光束间能量关系的折射率和反射率的理论表达式,为晶体器件特性的研究提供了有力的理论工具。数值模拟表明:得到的结果满足能量守恒;反射到各向同性介质中的光的电场(或磁场)与原入射光的电场(或磁场)不再平行;光轴的取向和入射角的大小对折射的o光、e光的能量比有很大的影响。  相似文献   

18.
We perform theoretical analysis of the method of field focusing in a randomly inhomogeneous waveguide using reradiation of the received signal with time reversal. The simplest case where point sources and receivers are used for emission and reception is considered. As an example, the waveguide is chosen which simulates an underwater sound channel with refractive-index fluctuations caused by random internal waves. In underwater acoustics, the considered method of field focusing is usually applied at relatively short distances that are shorter than or about 10 km. This work deals with much longer paths, along which sound waves propagate under conditions of well-developed ray and wave chaos. Main attention is given to studying the width of the focal spot and the field amplitude at its center. It is shown that the amplitude distribution in the vertical section of the focal spot and the peak amplitude value at its center can be estimated analytically using the stochastic ray theory.  相似文献   

19.
We present a new scheme to report on Goos–Hänchen (GH) shift experienced by the Gaussian light beam interacting with an optical cavity filled with four-level sodium atomic medium in the spectral hole burning region with and without Doppler broadening effect. Theoretical atomic density-matrix formalism is employed to obtain the susceptibility of atomic medium while the stationary-phase-theory is used to compute the GH shift in the reflected and transmitted probe beams subjected to control fields. A steep normal slope of dispersion is observed with a maximum and zero probability of transmission and reflection coefficients, respectively, at the regions of the spectral holes burning. In the normal dispersion spectrum at the region of spectral hole burning, positive and negative GH shift is observed, respectively, in the transmitted and reflected light beams. However, at anomalous dispersive regions negative GH shift in the transmission beam and positive GH shift in the reflection beam is observed. The reflection and transmission coefficients as well as the spatial GH shift are the functions of probe detuning, collective phase of control fields, beam incident angle and inverse Doppler broadening effect in the spectral hole burning region. The position and number of spectral holes also depend on the same spectral parametrs as stated above. The study is expected to be useful for optoelectronic devices and optical-clocking applications.  相似文献   

20.
This paper examines the conditions for, and provides examples of, ray splitting in the reflection and refraction of surface acoustic waves (SAW) in elastically anisotropic solids at straight obstacles such as edges, surface breaking cracks, and interfaces between different solids. The concern here is not with the partial scattering of an incident SAW's energy into bulk waves, but with the occurrence of more than one SAW ray in the reflected and/or transmitted wave fields, by analogy with birefringence in optics and mode conversion of bulk elastic waves at interfaces. SAW ray splitting is dependent on the SAW slowness curve possessing concave regions, which within the constraint of wave vector conservation parallel to the obstacle allows multiple outgoing SAW modes for certain directions of incidence and orientation of obstacle. The existence of pseudo-SAW for a given surface provides a further channel for ray splitting. This paper discusses some typical material configurations for which SAW ray splitting occurs. An example is provided of mode conversion entailing backward reflection or negative refraction. Experimental demonstration of ray splitting in the reflection of a laser generated SAW in GaAs(111) is provided. The calculation of SAW mode conversion amplitudes lies outside the scope of this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号